辽宁省鞍山市博圆中学高三数学文期末试卷含解析_第1页
辽宁省鞍山市博圆中学高三数学文期末试卷含解析_第2页
辽宁省鞍山市博圆中学高三数学文期末试卷含解析_第3页
辽宁省鞍山市博圆中学高三数学文期末试卷含解析_第4页
辽宁省鞍山市博圆中学高三数学文期末试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省鞍山市博圆中学高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是

(

)A.p为真

B.﹁q为假

C.p∧q为假

D.p∨q为真参考答案:C略2.阅读右图所示的程序框图,运行相应的程序,输出的结果是A.3

B.11

C.38

D.123

参考答案:【知识点】流程图

L1B第一次循环:可得;第二次循环:可得;不成立,所以执行否,所以输出11,故选择B.【思路点拨】根据循环体进行循环,即可得到.3.已知中,,平面外一点,满足,

则三棱锥的体积是()

A.

B.

C.

D.参考答案:B因为,所以棱锥顶点在底面投影为的外心,因为,所以,则外接圆半径为,所以三棱锥的高为,,则三棱锥的体积为,选B.4.我们常用以下方法求形如的函数的导数:先两边同取自然对数得:,再两边同时求导得到:,于是得到:,运用此方法求得函数的一个单调递增区间是

A.(,4)

B.(3,6)

C(0,)

D.(2,3)参考答案:C由题意知,则,所以,由得,解得,即增区间为,选C.5.阅读下面程序框图,输出的结果s的值为(

)A. B.0 C. D.参考答案:C由于即每项的和为零,程序运行得.6.已知两个集合,,则=A.

B.

C.

D.参考答案:B略7.已知向量,满足,“”是“”的(

)A.必要不充分条件

B.充分不必要条件

C.充要条件

D.既不充分也不必要条件参考答案:B若,则,即.故“”是“”的充分不必要条件.

8.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β参考答案:D考点:平面与平面垂直的性质.专题:空间位置关系与距离;简易逻辑.分析:本题考查的是平面与平面垂直的性质问题.在解答时:A注意线面平行的定义再结合实物即可获得解答;B反证法即可获得解答;C利用面面垂直的性质通过在一个面内作交线的垂线,然后用线面垂直的判定定理即可获得解答;D结合实物举反例即可.解答:解:由题意可知:A、结合实物:教室的门面与地面垂直,门面的上棱对应的直线就与地面平行,故此命题成立;B、假若平面α内存在直线垂直于平面β,根据面面垂直的判定定理可知两平面垂直.故此命题成立;C、结合面面垂直的性质可以分别在α、β内作异于l的直线垂直于交线,再由线面垂直的性质定理可知所作的垂线平行,进而得到线面平行再由线面平行的性质可知所作的直线与l平行,又∵两条平行线中的一条垂直于平面那么另一条也垂直于平面,故命题成立;D、举反例:教室内侧墙面与地面垂直,而侧墙面内有很多直线是不垂直与地面的.故此命题错误.故选D.点评:本题考查的是平面与平面垂直的性质问题.在解答的过程当中充分体现了面面垂直、线面垂直、线面平行的定义判定定理以及性质定理的应用.值得同学们体会和反思.9.已知为第三象限角,且,则的值为A.

B.

C.

D.参考答案:B略10.要得到函数的图像可将的图像

A.向右平移个单位长度

B.向左平移个单位长度C.向右平移个单位长度

D.向左平移个单位长度参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.数列的首项为1,数列为等比数列且,若,

.参考答案:1024略12.函数在区间上取值范围为____________.参考答案:[,]13.已知直线与圆相切,若,,则的最小值为

.参考答案:314.

.参考答案:15.设,用表示不超过的最大整数,称函数为高斯函数,也叫取整函数.现有下列四个命题:①高斯函数为定义域为的奇函数;②是的必要不充分条件;③设,则函数的值域为;④方程的解集是.其中真命题的序号是________.(写出所有真命题的序号)参考答案:【知识点】命题的真假判断与应用.A2

【答案解析】②③④

解析:对于①,f(﹣1.1)=[﹣1.1]=﹣2,f(1.1)=[1.1]=1,显然f(﹣1.1)≠﹣f(1.1),故定义域为R的高斯函数不是奇函数,①错误;对于②,“[x]”≥“[y]”不能?“x≥y”,如[4.1]≥[4.5],但4.1<4.5,即充分性不成立;反之,“x≥y”?“[x]”≥“[y]”,即必要性成立,所以“[x]”≥“[y]”是“x≥y”的必要不充分条件,故②正确;对于③,设g(x)=()|x|,作出其图象如下:由图可知,函数f(x)=[g(x)]的值域为{0,1},故③正确;对于④,[]=[]=[]=[]﹣1,即[]+1=[],显然,>,即x>﹣1;(1)当0≤<1,即﹣1≤x<3时,[]=0,[]+1=1;要使[]+1=[],必须1≤<2,即1≤x<3,与﹣1≤x<3联立得:1≤x<3;(2)当1≤<2,即3≤x<7时,[]=1,[]+1=2;要使[]+1=[],必须2≤<3,即3≤x<5,与3≤x<7联立得:3≤x<5;(3)当2≤<3,即7≤x<11时,[]=2,[]+1=3;要使[]+1=[],必须3≤<4,即5≤x<7,与7≤x<11联立得:x∈?;综上所述,方程[]=[]的解集是{x|1≤x<5},故④正确.故答案为:②③④.【思路点拨】①,举例说明,高斯函数f(x)=[x]中,f(﹣1.1)≠﹣f(1.1),可判断①错误;②,利用充分必要条件的概念,举例如[4.1]≥[4.5],但4.1<4.5,说明“[x]”≥“[y]”是“x≥y”的必要不充分条件;③,作出g(x)=()|x|的图象,利用高斯函数f(x)=[x]可判断函数f(x)=[g(x)]的值域为{0,1};④,方程[]=[]?[]+1=[],通过对0≤<1,1≤<2,2≤<3三种情况的讨论与相应的的取值范围的讨论可得原方程的解集是{x|1≤x<5},从而可判断④正确.16.设函数,给出以下四个命题:①当c=0时,有②当b=0,c>0时,方程③函数的图象关于点(0,c)对称④当x>0时;函数,。其中正确的命题的序号是_________。参考答案:1.2.3略17.如图,已知椭圆+=1(a>b>0)上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF⊥BF,当∠ABF=时,椭圆的离心率为.参考答案:【考点】K4:椭圆的简单性质.【分析】设椭圆的左焦点为F1,连结AF1,BF1,通过|AB|=|F1F|=2c,所以在Rt△ABF中,|AF|=2csin,|BF|=2ccos,由椭圆定义,转化求解离心率即可.【解答】解:设椭圆的左焦点为F1,连结AF1,BF1,由对称性及AF⊥BF可知,四边形AFBF1是矩形,所以|AB|=|F1F|=2c,所以在Rt△ABF中,|AF|=2csin,|BF|=2ccos,由椭圆定义得:2c(cos+sin)=2a,即:e====.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.参考答案:考点:圆的切线的性质定理的证明;直线与圆相交的性质;直线与圆的位置关系;与圆有关的比例线段.专题:计算题;证明题.分析:(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB?PD,求出PB的长,然后再根据相交弦定理得PA?PC=BP?PE,求出PE,再根据切割线定理得AD2=DB?DE=DB?(PB+PE),代入求出即可.解答:解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB?PD,∴62=PB?(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA?PC=BP?PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB?DE=9×16,∴AD=12点评:此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.19.某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):A444.555.566

B4.5566.56.5777.5

C555.566777.588(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c的最小值(结论不要求证明).参考答案:【考点】函数模型的选择与应用.【分析】(I)利用该公司购买的C品牌电动智能送风口罩比B品牌多200台,建立方程,即可求该公司购买的B品牌电动智能送风口罩的数量;(Ⅱ)根据古典概型概率计算公式,可求出A品牌待机时长高于B品牌的概率;(Ⅲ)根据平均数的定义,写出a+b+c的最小值.【解答】解:(Ⅰ)设该公司购买的B品牌电动智能送风口罩的数量为x台,则购买的C品牌电动智能送风口罩为台,由题意得,所以x=800.答:该公司购买的B品牌电动智能送风口罩的数量为800台..…(Ⅱ)设A品牌待机时长高于B品牌的概率为P,则.答:在A品牌和B品牌抽出的电动智能送风口罩中各任取一台,A品牌待机时长高于B品牌的概率为..…(Ⅲ)18.…20.已知椭圆C:+y2=1和圆O:x2+y2=1,过点A(m,0)(m>1)作两条互相垂直的直线l1,l2,l1于圆O相切于点P,l2与椭圆相交于不同的两点M,N.(1)若m=,求直线l1的方程;(2)求m的取值范围;(3)求△OMN面积的最大值.参考答案:【考点】直线与椭圆的位置关系.【分析】(1)由题意设出直线l1的方程,由直线与圆相切的条件、点到直线的距离公式列出方程,可得直线l1的方程;(2)由条件对m分类讨论,设直线l2、直线l1的方程,分别列出方程求出m和k关系,联立椭圆方程化简后,利用△>0列出方程化简后,求出m的取值范围;(3)设M(x1,y1),N(x2,y2),由条件对m分类讨论,先求出斜率不存在时△OMN面积,利用韦达定理和弦长公式表示出△OMN面积,化简后利用换元法求出面积的最大值.【解答】解:(1)由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=k(x﹣),即kx﹣y﹣k=0,∴圆O:x2+y2=1的圆心O(0,0)到直线l1的距离d=,化简得k=1或k=﹣1,∴直线l1的方程是或;(2)①当1<m

时,满足条件;②当m≥时,直线l2的斜率存在,设为k,则直线l2的方程为y=k(x﹣m),即kx﹣y﹣km=0,∵l1⊥l2,∴直线l1的方程为y=(x﹣m)(k≠0),即x+ky﹣m=0,∵l1于圆O相切于点P,∴,化简得m2=1+k2,由得,(2k2+1)x2﹣4mk2x+2k2m2﹣2=0,∴△=(﹣4mk2)2﹣4(2k2+1)(2m2k2﹣2)>0,化简得,1+k2(2﹣m2)>0,由m2=1+k2得,k2=m2﹣1,代入上式化简得,m4﹣3m2+1<0,解得,又m≥,则,得,综上得,m的取值范围是;(3)设M(x1,y1),N(x2,y2),①当1<m

时,若直线l2的斜率不存在,则直线l2的方程x=m,不妨设M(m,),N(m,),∴|MN|=,则△OMN面积S==,由得1<m2<2,当m2=1时,△OMN面积S取到最大值;②当m≥时,直线l2的斜率存在,设为k,则直线l2的方程为y=k(x﹣m),即kx﹣y﹣km=0,∵l1⊥l2,∴直线l1的方程为y=(x﹣m)(k≠0),即x+ky﹣m=0,∵l1于圆O相切于点P,∴,化简得m2=1+k2,由得,(2k2+1)x2﹣4mk2x+2k2m2﹣2=0,则x1+x2=,x1x2=,1+k2(2﹣m2)|MN|===,又原点O(0,0)到直线l2的距离d=,∴△OMN面积S===,设t=,则S=,由以及m2=1+k2得,0<t<1,所以当t=时,△OMN面积的最大值是,综上得,△OMN面积的最大值是.21.已知函数,.(1)若将函数图象向左平移m个单位后,得到函数,要使恒成立,求实数m的最大值;(2)当时,函数存在零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论