![高等学校学生人数计量分析_第1页](http://file4.renrendoc.com/view/bd885b62d8555198b16759efdf2c0aae/bd885b62d8555198b16759efdf2c0aae1.gif)
![高等学校学生人数计量分析_第2页](http://file4.renrendoc.com/view/bd885b62d8555198b16759efdf2c0aae/bd885b62d8555198b16759efdf2c0aae2.gif)
![高等学校学生人数计量分析_第3页](http://file4.renrendoc.com/view/bd885b62d8555198b16759efdf2c0aae/bd885b62d8555198b16759efdf2c0aae3.gif)
![高等学校学生人数计量分析_第4页](http://file4.renrendoc.com/view/bd885b62d8555198b16759efdf2c0aae/bd885b62d8555198b16759efdf2c0aae4.gif)
![高等学校学生人数计量分析_第5页](http://file4.renrendoc.com/view/bd885b62d8555198b16759efdf2c0aae/bd885b62d8555198b16759efdf2c0aae5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计量经济学课程论文普通高等学校在校学生总数变动的多因素分析摘要本文主要通过对中国普通高等学校在校学生总数的变动进行多因素分析,建立以在校大学生总数为应变量,以其它可量化影响因素为自变量的多元线性回归模型,并利用模型对在校大学生总数进行数量化分析,观察各因素是如何分别影响在校大学生总数的。目录1提出问题2TOC\o"1-5"\h\z2模型设定33数据的搜集54模型的估计与检验65结论14提出问题改革开放以来,中国的教育事业取得了长足的发展,各项教育指标都较以往有了很大提高,受教育的人数也是逐年上升,文盲比例直线下降。随着有知识、有文化的人数的不断增加,中国的经济也随之高速发展,众多毕业生们在各行各业上表现都十分出色,取得了一系列令人瞩目的成就。从趋势上看,大学生人数将会持续上升。我国第六次人口普查数据显示,全国31省份具有大学(指大专以上)文化程度的人口近1.2亿。同第五次全国人口普查相比,每10万人中具有大学文化程度的由3611人上升为8930人,人数翻了一倍多。这主要是因为我国高校从1999年开始大规模扩招。教育部曾指出,2008年全国各类高等教育在学人数到达2900万人,毛入学率到达23.3%。中国高等教育规模居世界首位,已经进入大众化阶段的历史跨越。近年来,很多学者在对教育、经济等方面做出了深入的研究,发现在校大学生数和普通高等学校数、总人口数二者存在着密切联系。在本文站在前人的基础上,引用计量的方法,将二者综合起来对在校大学生数量变动的影响情况进行探讨,同时在我国经济飞速发展的过程中,人均GDP的增长,对在校大学生的数量也存在着重要影响,因而本文将人均GDP引入该项目的实证研究分析。模型设定Y二卩+卩X+卩X+卩X+ui0112233其中,Y—在校大学生总数〔应变量〕XI――我国总人口〔解释变量〕X2——普通高等学校总数〔解释变量〕X3——我国人均GDP〔解释变量〕数据的搜集年份学生总数Y〔万〕总人口xl〔万〕学校总数x2〔所〕人均GDPx3〔元〕1985105851l0l61986l07507l0541987l09300l0631988lll026l0751989ll2704l0751990ll4333l0751991ll5823l0751992ll7l7ll0531993ll85l7l0651994ll9850l0801995l2ll2ll0541996l22389l0321997l23626l0201998l2476ll022
199912578610712000126743104120011276271225200212845313962003129227155220041299881731200513075617922006131448186720071321291908200813280222632009133474230525963.0020102231.8134091235830567.002011134735240936018.002012135404244239544.0020132468.1136072249143320.0020142547.7136782252946629.00资料来源:2015年中国统计年鉴〕模型的估计与检验建立工作文件夹,并输入上图数据分别做散点图分析,并建立回归模型。〔其中:用Y表示普通高等学校在校学生总数,用XI表示我国总人口,用X2表示普通高等学校总数,用X3表示我国人均GDP,共三组〕,如下:从散点图的走势可知,普通高等学校在校学生总数与我国总人口呈正相关关系,普通高等学校在校学生总数与普通高等学校总数呈正相关关系,普通高等学校在校学生总数与我国人均GDP呈正相关关系。根据散点图显示的结果〔Y与XI、X2、X3呈现线性关系〕,建立回归模型如下:Y二卩+卩X+卩X+卩X+ui0112233其中:*表示普通高等学校在校学生总数,XI表示我国总人口,X2表示普通高等学校总数,X3表示我国人均GDP,卩为扰动项。(3)求回归方程在EViews命令框中直接键入“LSYCX1X2X3”,然后回车,可出现下列图计算结果:DependentVariable:YMethod:LeastSquare5Date:05/07/16Time:21:18SampHe:19B52014Includedobservations;30VariableCoefficientStd.Errort-&tatisticProb.C-3059.B14346.7655-^.B23S720.0000X10.0165520.0029875.54U960.0000X21.330m0.09072914664450.0000X3-0.0007a&0.003859-0.1826580.B565Ft-squared0.992042Meandependentvar990.5100AdjustedR-squared0.991123S.D.dependentvarSS15327■S.E.ofregression83.08727Maikeinfocriterion11.80123Sumsquaredresid179+90.9Schwarzcriterion11.&SSCELoglikelihood-173.0184Hannan-Q.uinncriter.1-1.S6099F-statistic1000.317Durbin-Watsonstat1.140692ProbfF-statiStic)o.ooooao参数估计所建立的回归方程为:Y=+X+X-00705X123t=()()()()R2=0.992042R=F=模型检验:〔1〕经济意义检验:普通高等学校在校学生总数与我国总人口成正相关,与普通高等学校总数成正相关,与我国人均GDP成负16552单位,符合经济检验;当我国总人口、我国人均GDP不变时,普通高等学校总数增加1单位,普通高等学校在校学生总数增加1.330493单位,符合经济检验;当我国总人口、普通高等学校总数不变时,我国人均GDP增加1单位,普通高等学校在校学生总数单位,这与理论分析和经济检验不一致。〔2〕经济计量检验总体显著性检验〔拟合优度和统计检验〕:由回归结果可知,可决系数R292042,R91123与1十分接近,说明模型在整体上对数据的拟合优度很好。回归系数显著性检验F检验针对H:B=B=B=0,给定显著性水平a为0.05,在F分布表中查出自由0123度3和26的临界值F〔3,26〕=。由于F=>,应拒绝原假设H°,说明回归方程显著,即我国总人口〔X〕,普通高等学校总数〔X〕和我国人均GDP〔X〕总体对123〔Y〕普通高等学校在校学生总数有显著影响。t检验分别针对H:B=0〔j=l,2,3〕,给定显著性水平a为0.05时,查t分布表0j得自由度26的临界值t〔26〕=。对应统计量为,,,|t|,|t|>t〔26〕12二,通过显著性检验,|t|<t〔26〕=2.056,所以未通过显著性检验。3〔3〕多重共线性检验由于R2=较大且接近1,F=>F〔3,26〕=,所以认为普通高等学校在校学生总数与上述变量总体上线性显著相关。但由于X的经济检验不符合以及参数估3计值未能通过t检验,所以认为解释变量间有可能存在多重共线性。第一步:检验简单相关系数。X1X2X3之间的相关性:由Eviews可得:CorrelationX1X2X31.0000000.3134610.323-673X20.&1S461-i.oooooa0.95^204X30.8236730.95320^1.000000表中数据皆接近于1,可见,我国总人口,普通高等学校总数,我国人均GDP三个解释变量间高度相关,也就是存在严重的多重共线性。第二步:为检验多重共线性的影响,作如下简单回归:(1)分别作Y与X1,X2,X3的回归:①输入命令“lsycxl”,得:
DependentVariable:YMeihod:LeastSquaresDale:O5VO7J16Time:22:51Sarnp-le:198520UIncludedobservations:30VariableCoefficientStd.Errort-StatisticProb.C-9268.1501131551-8.1906620.0000X10.0825200.0090789.0901720.0000R.-squared07+6907Meandependlentwar990.5100AdjuatedR-squared07^7868S.DdependlenivarSS15327■S.E.ofregression451-5138Akaikeinfocriterion15.12743■Sumsquaredresid5709211.Schwarzcriterion15.22084Loglikelihood-^24.9114Hannan-Ouinncriter.15.15731F-statistic^2.63122Durbin-Watsonstat0.051266Prot)(F-statistic>0.000000得到回归方程为:Y=+X1()()R2=②输入命令“lsycx2”,得:DependentVariable:YMethod:LeastSquares□ate:05J07/16Time:22:52Sample:19S52014Includedobservations:30VariaWeCoefficientStd.Errort-StatisticProb.C62.56772-20.91S5&0.0000X211.5^234-10.03915239.138000.0000R-squared0.992049Meandependentvar990.5100AdjustedR-squared0.981408SDdependentvarS31.S32TS.E.ofregression120.2400Akaikeinfocriterion1248133Sumsquaredresid40486S.1Schwarzcriterion1257474Loglikelihood-1-85.2199Hannan-Quinncriter.12.51121F-statistic1I531.7B3Durbin-Watsonstat0.667468Pro&CF-statistic)0.00000022Y=-+X(-)()R2=0.982049输入命令“lsycx3”,得:DependentVariable:YMethod:LeastS-quarefDate:05V07J16Time:22:53Sample:19852014Includedobservations:30VariableCoefTicientStd.Errort-&tatisticProb.C183.830470.150552.6205120.0140X30.0610470.00371116.452390.0000Fi-squared0.906254MeandEpendentvar990.5100AdjustedR-squared0.9029Q6■S.D.dependentvarBS1.-8B27S.E.ofregression274.7932Akaikeinfocriterion14.1S426Sumsquared倍id2114317-■Schwarzcriterion14.22767Loglikelihood-210013&Hannan-Cluinncriter.1416414F-statistic270.6910□urbin-Watsonstat0.127636Prob(F-statiStic)0.000000Y=+X3()()R2=0.906254以上三个方程根据经济理论和统计检验,普通高等学校总数〔X』是最重要的解释变量〔t检验值二也最大〕,从而得出最优简单回归方程Yf(X丿。2)逐步回归法33将其余变量逐个引入Y=f(X),并进行回归,结果如下表:2卩。(常数)02"〕气〕03(X3)R2Y=f(X?)〔-〕〔〕Y=f(X?,X1)〔-〕〔〕〔〕Y=f(X?,X1,X3)〔-〕〔〕〔〕结果分析:在最优简单回归方程Y=f(X)中引入变量X,使R28204992031,R2值改良较21大,的,芮都是正号是合理的,进行t检验,为,B2都显著,从经济上来看是合理的。因此,可以认为X是“有利变量”,应给予保留。1引入变量X,R29203192042,R2值略有提高,对其他两个解释变量没有多大影响,且B3是负号是不合常理的,进行t检验,”3不显著,因此认为x3是“多余变量”,应从模型中删除。得到如下结论:回归模型以Yf(X2,XI)为最优模型。□ependentVariable:YMethod:LeastSquares□ate:05/07/16Time:2^:41Sample:-19852014Includedobservations:30VariableCoefficientStd.Errort-StatisticProb.C-3029.097297.7305-10.172250.0000X21.3162640.04567328.819440.0000X10.0164030.0028205-.81M770.0000R-squared0.S920S1Meandependentvar990.5100AdjustedR-squared0.99144-1■S.D.dependentvarSS1.8S27S.E.ofregr&ssion01.5864-0Akaiksinfocriterion1173564Sumsquaredresid179721.2■Schwarzcriterion11.37596Loglikelihood-173.0376Hannan-Quinncriter.11.78067F-stati3tic1680.659□urbin-Watsonstat1.117852Prob(F-statistic)0.000000最优模型为:Y=+X+X21t=()()()R2=0.992031F=由普通高等学校在校学生总数变动模型可知,当学校总数不变时,我国总人口每增加1单位,16403万人;当我国总人口不变时,学校总数每增加1单位,普通高等学校在校学生总数增加1.316264万人。〔3〕异方差检验与修正①White检验结果如下:11111Hetero$灼曲前dKTastWh帕jF-staflsflcD^E*R-squaredE-caiediexplsinBdiSB1.47571770E44159.32209DPTO&.F任Z4)ProbChi-Square(5;iPreb.ChkE-quare£&)02346021E60.0969TesiEquationDependentvarlatJle-RESJD*?Heth口1±LeastSquaresDate-05J27J16Time:16:i5Sample.19B&2014Includedobselations:30VariableCoefficieniStdError(-StatisticProsc060041g011072.01J3S93320.3000X1A23.10E-057.3BE-050..420431D.6779站税20003A5000049570.7767410.4443XI■11.5102B14.7QB65■0.702550D.4415』0554690D17E27-1.474173D.1534X2-331.2037&35.3709-0.&16915D.5431假设分别针对h0:a=a=...=a=0,给定显著性水平a为0.05时,查咒2分02310布表得自由度9的临界值X2°.05(5)。根据white检验可知nR2=7.0544<咒20.(⑸=11.070,所已接受原假设,模型不存在异方差。第三步:自相关的检验与修正1〕相关性检验由参数估计所建立的回归方程为:Y=+X+X21t=()()()R2=0.992031F=①图示法由前面可知由前面可知DW=,而p人=1-DW/2=”0=-/(1-PA)=-我们观察图表,残差的序列图是带有循环性的,e是在连续几个正值后再连i续,几个负值,认为它们之间存在自相关。②DW检验由开始的估计的,在给定显著水平a=0.05,查DW表因为T=30.k=2得下限临界值d二,上限临界值d=1.567。因为统计量0<1.117852=DW<d84,则说明存在LuL正自相关由以上结果说明,参数估计所建立的回归方程存在正自相关相关性修正:科伦-奥科特〔迭代法〕命令:LSYCXIX2AR(1),可得如下结果:DependentVariable:YMethod:LeastSquares□ate:05/28/16Time:21:56Sample(adjusted):19362014Includedobservations:29afteradjustmentsConvergenceachievedafter27iterationsVariableCoefficientStd.Errort-StatisticProbC-16918.918271.639-2.04541200515X10.1301300.0603712.1563440.0409X20.6024070.13DS764.6205260.0001ARC1}0.8952620.0404-7822.117400.0000R-squared0.996450Meandependentvar1018.793AdjustedR-squared0.996024S.D.dependentvar533.53-70S.E.ofregression55.70955Akaikeinfocrit
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《财务报表分析G》课件2
- 企业培训师复习试题附答案
- 《非均相物系分离》课件
- 高中物理项目化学习路径探究
- 《高空作业操作规范》课件
- 《专题数列》课件
- 绿色农业产业合作协议
- 九年级语文愚公移山课件教案
- 服装设计行业服装样品制作合同
- 11 白桦 第一课时 说课稿 -2023-2024学年语文四年级下册统编版
- 称呼礼仪精品课件
- 标准太阳能光谱数据
- 小学校长新学期工作思路3篇
- 四年级下册数学应用题专项练习
- 思想道德与法治课件:第四章 第二节 社会主义核心价值观的显著特征
- 煤矿安全生产事故风险辨识评估和应急资源调查报告
- 建筑结构课程设计说明书实例完整版(本)
- 桥梁桥台施工技术交底(三级)
- 《一起长大的玩具》原文全文阅读.docx
- 醋酸钠化学品安全技术说明书MSDS
- 顶进法施工用钢筋溷凝土管结构配筋手册
评论
0/150
提交评论