




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3,PartB
DescriptiveStatistics:NumericalMeasuresMeasuresofDistributionShape,RelativeLocation,andDetectingOutliersExploratoryDataAnalysisMeasuresofAssociationBetweenTwoVariablesTheWeightedMeanand WorkingwithGroupedDataMeasuresofDistributionShape,
RelativeLocation,andDetectingOutliersDistributionShapez-ScoresChebyshev’sTheoremEmpiricalRuleDetectingOutliersDistributionShape:SkewnessAnimportantmeasureoftheshapeofadistributioniscalledskewness.TheformulafortheskewnessofsampledataisSkewnesscanbeeasilycomputedusingstatisticalsoftware.DistributionShape:SkewnessSymmetric(notskewed)RelativeFrequency.05.10.15.20.25.30.350Skewness=0Skewnessiszero.Meanandmedianareequal.RelativeFrequency.05.10.15.20.25.30.350DistributionShape:SkewnessModeratelySkewedLeftSkewness=-.31Skewnessisnegative.Meanwillusuallybelessthanthemedian.DistributionShape:SkewnessModeratelySkewedRightRelativeFrequency.05.10.15.20.25.30.350Skewness=.31Skewnessispositive.Meanwillusuallybemorethanthemedian.DistributionShape:SkewnessHighlySkewedRightRelativeFrequency.05.10.15.20.25.30.350Skewness=1.25Skewnessispositive(oftenabove1.0).Meanwillusuallybemorethanthemedian.Seventyefficiencyapartmentswererandomlysampledinacollegetown.Themonthlyrentpricesfortheapartmentsarelistedbelowinascendingorder.
DistributionShape:SkewnessExample:ApartmentRentsRelativeFrequency.05.10.15.20.25.30.350Skewness=.92DistributionShape:SkewnessExample:ApartmentRentsThez-scoreisoftencalledthestandardizedvalue.Itdenotesthenumberofstandarddeviationsadatavaluexiisfromthemean.z-ScoresExcel’sSTANDARDIZEfunctioncanbeusedtocomputethez-score.z-ScoresAdatavaluelessthanthesamplemeanwillhaveaz-scorelessthanzero.Adatavaluegreaterthanthesamplemeanwillhaveaz-scoregreaterthanzero.Adatavalueequaltothesamplemeanwillhaveaz-scoreofzero.Anobservation’sz-scoreisameasureoftherelativelocationoftheobservationinadataset.z-ScoreofSmallestValue(425)z-ScoresStandardizedValuesforApartmentRentsExample:ApartmentRentsChebyshev’sTheoremAtleast(1-1/z2)oftheitemsinanydatasetwillbewithinzstandarddeviationsofthemean,wherezisanyvaluegreaterthan1.Chebyshev’stheoremrequiresz>1,butzneednotbeaninteger.Atleastofthedatavaluesmustbewithinofthemean.75%z=2standarddeviationsChebyshev’sTheoremAtleastofthedatavaluesmustbewithinofthemean.89%z=3standarddeviationsAtleastofthedatavaluesmustbewithinofthemean.94%z=4standarddeviationsChebyshev’sTheoremLetz=1.5with=490.80ands=54.74Atleast(1-1/(1.5)2)=1-0.44=0.56or56%oftherentvaluesmustbebetween-z(s)=490.80-1.5(54.74)=409and+z(s)=490.80+1.5(54.74)=573(Actually,86%oftherentvaluesarebetween409and573.)Example:ApartmentRentsEmpiricalRuleWhenthedataarebelievedtoapproximateabell-shapeddistribution…Theempiricalruleisbasedonthenormaldistribution,whichiscoveredinChapter6.Theempiricalrulecanbeusedtodeterminethepercentageofdatavaluesthatmustbewithinaspecifiednumberofstandarddeviationsofthemean.EmpiricalRule Fordatahavingabell-shapeddistribution:ofthevaluesofanormalrandomvariablearewithinofitsmean.68.26%+/-1standarddeviationofthevaluesofanormalrandomvariablearewithinofitsmean.95.44%+/-2standarddeviationsofthevaluesofanormalrandomvariablearewithinofitsmean.99.72%+/-3standarddeviationsEmpiricalRulexm–3sm–1sm–2sm+1sm+2sm+3sm68.26%95.44%99.72%DetectingOutliersAnoutlierisanunusuallysmallorunusuallylargevalueinadataset.Adatavaluewithaz-scorelessthan-3orgreaterthan+3mightbeconsideredanoutlier.Itmightbe:anincorrectlyrecordeddatavalueadatavaluethatwasincorrectlyincludedinthedatasetacorrectlyrecordeddatavaluethatbelongsinthedatasetDetectingOutliersThemostextremez-scoresare-1.20and2.27Using|z|>3asthecriterionforanoutlier,therearenooutliersinthisdataset.StandardizedValuesforApartmentRentsExample:ApartmentRentsExploratoryDataAnalysis
Exploratorydataanalysisproceduresenableustousesimplearithmeticandeasy-to-drawpicturestosummarizedata.Wesimplysortthedatavaluesintoascendingorderandidentifythefive-numbersummaryandthenconstructaboxplot.Five-NumberSummary1SmallestValueFirstQuartileMedianThirdQuartileLargestValue2345Five-NumberSummaryLowestValue=425FirstQuartile=445Median=475ThirdQuartile=525LargestValue=615Example:ApartmentRentsBoxPlotAboxplotisagraphicalsummaryofdatathatisbasedonafive-numbersummary.AkeytothedevelopmentofaboxplotisthecomputationofthemedianandthequartilesQ1and
Q3.Boxplotsprovideanotherwaytoidentifyoutliers.400425450475500525550575600625Aboxisdrawnwithitsendslocatedatthefirstandthirdquartiles.BoxPlotAverticallineisdrawnintheboxatthelocationofthemedian(secondquartile).Q1=445Q3=525Q2=475Example:ApartmentRentsBoxPlotLimitsarelocated(notdrawn)usingtheinterquartilerange(IQR).Dataoutsidetheselimitsareconsideredoutliers.Thelocationsofeachoutlierisshownwiththesymbol
*. continuedBoxPlotLowerLimit:Q1-1.5(IQR)=445-1.5(80)=325UpperLimit:Q3+1.5(IQR)=525+1.5(80)=645Thelowerlimitislocated1.5(IQR)belowQ1.Theupperlimitislocated1.5(IQR)aboveQ3.Therearenooutliers(valueslessthan325orgreaterthan645)intheapartmentrentdata.Example:ApartmentRentsBoxPlotWhiskers(dashedlines)aredrawnfromtheendsoftheboxtothesmallestandlargestdatavaluesinsidethelimits.400425450475500525550575600625Smallestvalueinsidelimits=425Largestvalueinsidelimits=615Example:ApartmentRentsBoxPlotAnexcellentgraphicaltechniqueformakingcomparisonsamongtwoormoregroups.MeasuresofAssociation
BetweenTwoVariablesThusfarwehaveexaminednumericalmethodsusedtosummarizethedataforonevariableatatime.Oftenamanagerordecisionmakerisinterestedintherelationshipbetweentwovariables.Twodescriptivemeasuresoftherelationshipbetweentwovariablesarecovarianceandcorrelation
coefficient.CovariancePositivevaluesindicateapositiverelationship.Negativevaluesindicateanegativerelationship.Thecovarianceisameasureofthelinearassociationbetweentwovariables.CovarianceThecovarianceiscomputedasfollows:
forsamplesforpopulationsCorrelationCoefficientJustbecausetwovariablesarehighlycorrelated,itdoesnotmeanthatonevariableisthecauseoftheother.Correlationisameasureoflinearassociationandnotnecessarilycausation.Thecorrelationcoefficientiscomputedasfollows:
forsamplesforpopulationsCorrelationCoefficientCorrelationCoefficientValuesnear+1indicateastrongpositivelinear
relationship.Valuesnear-1indicateastrongnegativelinear
relationship.Thecoefficientcantakeonvaluesbetween-1and+1.Thecloserthecorrelationistozero,theweakertherelationship.Agolferisinterestedininvestigatingtherelationship,ifany,betweendrivingdistanceand18-holescore.277.6259.5269.1267.0255.6272.9697170707169AverageDrivingDistance(yds.)Average18-HoleScoreCovarianceandCorrelationCoefficientExample:GolfingStudyCovarianceandCorrelationCoefficient277.6259.5269.1267.0255.6272.9697170707169xy10.65-7.452.150.05-11.355.95-1.01.0001.0-1.0-10.65-7.4500-11.35-5.95AverageStd.Dev.267.070.0-35.408.2192.8944TotalExample:GolfingStudySampleCovarianceSampleCorrelationCoefficientCovarianceandCorrelationCoefficientExample:GolfingStudyTheWeightedMeanand
WorkingwithGroupedDataWeightedMeanMeanforGroupedDataVarianceforGroupedDataStandardDeviationforGroupedDataWeightedMeanWhenthemeaniscomputedbygivingeachdatavalueaweightthatreflectsitsimportance,itisreferredtoasaweightedmean.Inthecomputationofagradepointaverage(GPA),theweightsarethenumberofcredithoursearnedforeachgrade.Whendatavaluesvaryinimportance,theanalystmustchoosetheweightthatbestreflectstheimportanceofeachvalue.WeightedMeanwhere:
xi
=valueofobservationi
wi=weightforobservationiGroupedDataTheweightedmeancomputationcanbeusedtoobtainapproximationsofthemean,variance,andstandarddeviationforthegroupeddata.Tocomputetheweightedmean,wetreatthe
midpointofeachclassasthoughitwerethemeanofal
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学学术视角下高校教师教学评价的演变与改革路径
- 儿童心理健康护理服务指南
- 海洋新能源探索:氢能船舶岸电补给站的实践与案例分析
- 极端天气事件的频率预测-洞察阐释
- 氢能源与传统能源系统的整合与互补分析-洞察阐释
- 生态补偿机制研究-第35篇-洞察阐释
- 会计诚信建设路径-洞察及研究
- 英飞拓芯片设计与制造工艺协同的可靠性优化研究-洞察阐释
- 叶酸缺乏症患者的新型药物靶点探索-洞察阐释
- CJ证券JN营业部客户经理绩效考核方案的优化
- EPC总承包项目中的进度控制与资源分配
- 最全看图猜成语 课件
- 肿瘤中心建设计划书
- 快题设计课件
- 工程居间保密协议
- 成都市2021级(2024届)高中毕业班第一次诊断性检测(一诊)英语试卷(含答案)
- 多铁性材料应用
- 住院病历点评汇总表
- 压力容器年度检查报告(模板直接打印)
- 摩登家庭第一季台词中英对照
- 社会经济咨询服务合同范本
评论
0/150
提交评论