版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3,PartB
DescriptiveStatistics:NumericalMeasuresMeasuresofDistributionShape,RelativeLocation,andDetectingOutliersExploratoryDataAnalysisMeasuresofAssociationBetweenTwoVariablesTheWeightedMeanand WorkingwithGroupedDataMeasuresofDistributionShape,
RelativeLocation,andDetectingOutliersDistributionShapez-ScoresChebyshev’sTheoremEmpiricalRuleDetectingOutliersDistributionShape:SkewnessAnimportantmeasureoftheshapeofadistributioniscalledskewness.TheformulafortheskewnessofsampledataisSkewnesscanbeeasilycomputedusingstatisticalsoftware.DistributionShape:SkewnessSymmetric(notskewed)RelativeFrequency.05.10.15.20.25.30.350Skewness=0Skewnessiszero.Meanandmedianareequal.RelativeFrequency.05.10.15.20.25.30.350DistributionShape:SkewnessModeratelySkewedLeftSkewness=-.31Skewnessisnegative.Meanwillusuallybelessthanthemedian.DistributionShape:SkewnessModeratelySkewedRightRelativeFrequency.05.10.15.20.25.30.350Skewness=.31Skewnessispositive.Meanwillusuallybemorethanthemedian.DistributionShape:SkewnessHighlySkewedRightRelativeFrequency.05.10.15.20.25.30.350Skewness=1.25Skewnessispositive(oftenabove1.0).Meanwillusuallybemorethanthemedian.Seventyefficiencyapartmentswererandomlysampledinacollegetown.Themonthlyrentpricesfortheapartmentsarelistedbelowinascendingorder.
DistributionShape:SkewnessExample:ApartmentRentsRelativeFrequency.05.10.15.20.25.30.350Skewness=.92DistributionShape:SkewnessExample:ApartmentRentsThez-scoreisoftencalledthestandardizedvalue.Itdenotesthenumberofstandarddeviationsadatavaluexiisfromthemean.z-ScoresExcel’sSTANDARDIZEfunctioncanbeusedtocomputethez-score.z-ScoresAdatavaluelessthanthesamplemeanwillhaveaz-scorelessthanzero.Adatavaluegreaterthanthesamplemeanwillhaveaz-scoregreaterthanzero.Adatavalueequaltothesamplemeanwillhaveaz-scoreofzero.Anobservation’sz-scoreisameasureoftherelativelocationoftheobservationinadataset.z-ScoreofSmallestValue(425)z-ScoresStandardizedValuesforApartmentRentsExample:ApartmentRentsChebyshev’sTheoremAtleast(1-1/z2)oftheitemsinanydatasetwillbewithinzstandarddeviationsofthemean,wherezisanyvaluegreaterthan1.Chebyshev’stheoremrequiresz>1,butzneednotbeaninteger.Atleastofthedatavaluesmustbewithinofthemean.75%z=2standarddeviationsChebyshev’sTheoremAtleastofthedatavaluesmustbewithinofthemean.89%z=3standarddeviationsAtleastofthedatavaluesmustbewithinofthemean.94%z=4standarddeviationsChebyshev’sTheoremLetz=1.5with=490.80ands=54.74Atleast(1-1/(1.5)2)=1-0.44=0.56or56%oftherentvaluesmustbebetween-z(s)=490.80-1.5(54.74)=409and+z(s)=490.80+1.5(54.74)=573(Actually,86%oftherentvaluesarebetween409and573.)Example:ApartmentRentsEmpiricalRuleWhenthedataarebelievedtoapproximateabell-shapeddistribution…Theempiricalruleisbasedonthenormaldistribution,whichiscoveredinChapter6.Theempiricalrulecanbeusedtodeterminethepercentageofdatavaluesthatmustbewithinaspecifiednumberofstandarddeviationsofthemean.EmpiricalRule Fordatahavingabell-shapeddistribution:ofthevaluesofanormalrandomvariablearewithinofitsmean.68.26%+/-1standarddeviationofthevaluesofanormalrandomvariablearewithinofitsmean.95.44%+/-2standarddeviationsofthevaluesofanormalrandomvariablearewithinofitsmean.99.72%+/-3standarddeviationsEmpiricalRulexm–3sm–1sm–2sm+1sm+2sm+3sm68.26%95.44%99.72%DetectingOutliersAnoutlierisanunusuallysmallorunusuallylargevalueinadataset.Adatavaluewithaz-scorelessthan-3orgreaterthan+3mightbeconsideredanoutlier.Itmightbe:anincorrectlyrecordeddatavalueadatavaluethatwasincorrectlyincludedinthedatasetacorrectlyrecordeddatavaluethatbelongsinthedatasetDetectingOutliersThemostextremez-scoresare-1.20and2.27Using|z|>3asthecriterionforanoutlier,therearenooutliersinthisdataset.StandardizedValuesforApartmentRentsExample:ApartmentRentsExploratoryDataAnalysis
Exploratorydataanalysisproceduresenableustousesimplearithmeticandeasy-to-drawpicturestosummarizedata.Wesimplysortthedatavaluesintoascendingorderandidentifythefive-numbersummaryandthenconstructaboxplot.Five-NumberSummary1SmallestValueFirstQuartileMedianThirdQuartileLargestValue2345Five-NumberSummaryLowestValue=425FirstQuartile=445Median=475ThirdQuartile=525LargestValue=615Example:ApartmentRentsBoxPlotAboxplotisagraphicalsummaryofdatathatisbasedonafive-numbersummary.AkeytothedevelopmentofaboxplotisthecomputationofthemedianandthequartilesQ1and
Q3.Boxplotsprovideanotherwaytoidentifyoutliers.400425450475500525550575600625Aboxisdrawnwithitsendslocatedatthefirstandthirdquartiles.BoxPlotAverticallineisdrawnintheboxatthelocationofthemedian(secondquartile).Q1=445Q3=525Q2=475Example:ApartmentRentsBoxPlotLimitsarelocated(notdrawn)usingtheinterquartilerange(IQR).Dataoutsidetheselimitsareconsideredoutliers.Thelocationsofeachoutlierisshownwiththesymbol
*. continuedBoxPlotLowerLimit:Q1-1.5(IQR)=445-1.5(80)=325UpperLimit:Q3+1.5(IQR)=525+1.5(80)=645Thelowerlimitislocated1.5(IQR)belowQ1.Theupperlimitislocated1.5(IQR)aboveQ3.Therearenooutliers(valueslessthan325orgreaterthan645)intheapartmentrentdata.Example:ApartmentRentsBoxPlotWhiskers(dashedlines)aredrawnfromtheendsoftheboxtothesmallestandlargestdatavaluesinsidethelimits.400425450475500525550575600625Smallestvalueinsidelimits=425Largestvalueinsidelimits=615Example:ApartmentRentsBoxPlotAnexcellentgraphicaltechniqueformakingcomparisonsamongtwoormoregroups.MeasuresofAssociation
BetweenTwoVariablesThusfarwehaveexaminednumericalmethodsusedtosummarizethedataforonevariableatatime.Oftenamanagerordecisionmakerisinterestedintherelationshipbetweentwovariables.Twodescriptivemeasuresoftherelationshipbetweentwovariablesarecovarianceandcorrelation
coefficient.CovariancePositivevaluesindicateapositiverelationship.Negativevaluesindicateanegativerelationship.Thecovarianceisameasureofthelinearassociationbetweentwovariables.CovarianceThecovarianceiscomputedasfollows:
forsamplesforpopulationsCorrelationCoefficientJustbecausetwovariablesarehighlycorrelated,itdoesnotmeanthatonevariableisthecauseoftheother.Correlationisameasureoflinearassociationandnotnecessarilycausation.Thecorrelationcoefficientiscomputedasfollows:
forsamplesforpopulationsCorrelationCoefficientCorrelationCoefficientValuesnear+1indicateastrongpositivelinear
relationship.Valuesnear-1indicateastrongnegativelinear
relationship.Thecoefficientcantakeonvaluesbetween-1and+1.Thecloserthecorrelationistozero,theweakertherelationship.Agolferisinterestedininvestigatingtherelationship,ifany,betweendrivingdistanceand18-holescore.277.6259.5269.1267.0255.6272.9697170707169AverageDrivingDistance(yds.)Average18-HoleScoreCovarianceandCorrelationCoefficientExample:GolfingStudyCovarianceandCorrelationCoefficient277.6259.5269.1267.0255.6272.9697170707169xy10.65-7.452.150.05-11.355.95-1.01.0001.0-1.0-10.65-7.4500-11.35-5.95AverageStd.Dev.267.070.0-35.408.2192.8944TotalExample:GolfingStudySampleCovarianceSampleCorrelationCoefficientCovarianceandCorrelationCoefficientExample:GolfingStudyTheWeightedMeanand
WorkingwithGroupedDataWeightedMeanMeanforGroupedDataVarianceforGroupedDataStandardDeviationforGroupedDataWeightedMeanWhenthemeaniscomputedbygivingeachdatavalueaweightthatreflectsitsimportance,itisreferredtoasaweightedmean.Inthecomputationofagradepointaverage(GPA),theweightsarethenumberofcredithoursearnedforeachgrade.Whendatavaluesvaryinimportance,theanalystmustchoosetheweightthatbestreflectstheimportanceofeachvalue.WeightedMeanwhere:
xi
=valueofobservationi
wi=weightforobservationiGroupedDataTheweightedmeancomputationcanbeusedtoobtainapproximationsofthemean,variance,andstandarddeviationforthegroupeddata.Tocomputetheweightedmean,wetreatthe
midpointofeachclassasthoughitwerethemeanofal
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 糖尿病演讲稿
- 肺吸虫病预防与治疗
- 普外科手术部位预防感染
- 糖尿病护理教学查房
- 高中女生安全主题班会
- 中职学生教育课件
- 气囊止血带安全使用
- 施工员培训案例分析
- 冬季灭鼠检查方案(模板)
- 初二课文学习课件
- 【MOOC】模拟电子技术基础-华中科技大学 中国大学慕课MOOC答案
- 保护长江同饮一江水共护母亲河主题班会
- 美国史智慧树知到期末考试答案章节答案2024年东北师范大学
- 山西省普通高中学生综合发展报告
- 日本地铁路线图
- (完整word版)臭氧消毒通用技术条件YY0215-95
- 轴流风机液压缸介绍及问题处理办法
- 北京保障性住房政策文件
- 中小学与幼儿园校园周边道路交通设施设置
- 重庆市课程改革课程设置及实施指导意见
- 浅谈热贡霍念藏地区的五月嘛尼法会
评论
0/150
提交评论