版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3,PartB
DescriptiveStatistics:NumericalMeasuresMeasuresofDistributionShape,RelativeLocation,andDetectingOutliersExploratoryDataAnalysisMeasuresofAssociationBetweenTwoVariablesTheWeightedMeanand WorkingwithGroupedDataMeasuresofDistributionShape,
RelativeLocation,andDetectingOutliersDistributionShapez-ScoresChebyshev’sTheoremEmpiricalRuleDetectingOutliersDistributionShape:SkewnessAnimportantmeasureoftheshapeofadistributioniscalledskewness.TheformulafortheskewnessofsampledataisSkewnesscanbeeasilycomputedusingstatisticalsoftware.DistributionShape:SkewnessSymmetric(notskewed)RelativeFrequency.05.10.15.20.25.30.350Skewness=0Skewnessiszero.Meanandmedianareequal.RelativeFrequency.05.10.15.20.25.30.350DistributionShape:SkewnessModeratelySkewedLeftSkewness=-.31Skewnessisnegative.Meanwillusuallybelessthanthemedian.DistributionShape:SkewnessModeratelySkewedRightRelativeFrequency.05.10.15.20.25.30.350Skewness=.31Skewnessispositive.Meanwillusuallybemorethanthemedian.DistributionShape:SkewnessHighlySkewedRightRelativeFrequency.05.10.15.20.25.30.350Skewness=1.25Skewnessispositive(oftenabove1.0).Meanwillusuallybemorethanthemedian.Seventyefficiencyapartmentswererandomlysampledinacollegetown.Themonthlyrentpricesfortheapartmentsarelistedbelowinascendingorder.
DistributionShape:SkewnessExample:ApartmentRentsRelativeFrequency.05.10.15.20.25.30.350Skewness=.92DistributionShape:SkewnessExample:ApartmentRentsThez-scoreisoftencalledthestandardizedvalue.Itdenotesthenumberofstandarddeviationsadatavaluexiisfromthemean.z-ScoresExcel’sSTANDARDIZEfunctioncanbeusedtocomputethez-score.z-ScoresAdatavaluelessthanthesamplemeanwillhaveaz-scorelessthanzero.Adatavaluegreaterthanthesamplemeanwillhaveaz-scoregreaterthanzero.Adatavalueequaltothesamplemeanwillhaveaz-scoreofzero.Anobservation’sz-scoreisameasureoftherelativelocationoftheobservationinadataset.z-ScoreofSmallestValue(425)z-ScoresStandardizedValuesforApartmentRentsExample:ApartmentRentsChebyshev’sTheoremAtleast(1-1/z2)oftheitemsinanydatasetwillbewithinzstandarddeviationsofthemean,wherezisanyvaluegreaterthan1.Chebyshev’stheoremrequiresz>1,butzneednotbeaninteger.Atleastofthedatavaluesmustbewithinofthemean.75%z=2standarddeviationsChebyshev’sTheoremAtleastofthedatavaluesmustbewithinofthemean.89%z=3standarddeviationsAtleastofthedatavaluesmustbewithinofthemean.94%z=4standarddeviationsChebyshev’sTheoremLetz=1.5with=490.80ands=54.74Atleast(1-1/(1.5)2)=1-0.44=0.56or56%oftherentvaluesmustbebetween-z(s)=490.80-1.5(54.74)=409and+z(s)=490.80+1.5(54.74)=573(Actually,86%oftherentvaluesarebetween409and573.)Example:ApartmentRentsEmpiricalRuleWhenthedataarebelievedtoapproximateabell-shapeddistribution…Theempiricalruleisbasedonthenormaldistribution,whichiscoveredinChapter6.Theempiricalrulecanbeusedtodeterminethepercentageofdatavaluesthatmustbewithinaspecifiednumberofstandarddeviationsofthemean.EmpiricalRule Fordatahavingabell-shapeddistribution:ofthevaluesofanormalrandomvariablearewithinofitsmean.68.26%+/-1standarddeviationofthevaluesofanormalrandomvariablearewithinofitsmean.95.44%+/-2standarddeviationsofthevaluesofanormalrandomvariablearewithinofitsmean.99.72%+/-3standarddeviationsEmpiricalRulexm–3sm–1sm–2sm+1sm+2sm+3sm68.26%95.44%99.72%DetectingOutliersAnoutlierisanunusuallysmallorunusuallylargevalueinadataset.Adatavaluewithaz-scorelessthan-3orgreaterthan+3mightbeconsideredanoutlier.Itmightbe:anincorrectlyrecordeddatavalueadatavaluethatwasincorrectlyincludedinthedatasetacorrectlyrecordeddatavaluethatbelongsinthedatasetDetectingOutliersThemostextremez-scoresare-1.20and2.27Using|z|>3asthecriterionforanoutlier,therearenooutliersinthisdataset.StandardizedValuesforApartmentRentsExample:ApartmentRentsExploratoryDataAnalysis
Exploratorydataanalysisproceduresenableustousesimplearithmeticandeasy-to-drawpicturestosummarizedata.Wesimplysortthedatavaluesintoascendingorderandidentifythefive-numbersummaryandthenconstructaboxplot.Five-NumberSummary1SmallestValueFirstQuartileMedianThirdQuartileLargestValue2345Five-NumberSummaryLowestValue=425FirstQuartile=445Median=475ThirdQuartile=525LargestValue=615Example:ApartmentRentsBoxPlotAboxplotisagraphicalsummaryofdatathatisbasedonafive-numbersummary.AkeytothedevelopmentofaboxplotisthecomputationofthemedianandthequartilesQ1and
Q3.Boxplotsprovideanotherwaytoidentifyoutliers.400425450475500525550575600625Aboxisdrawnwithitsendslocatedatthefirstandthirdquartiles.BoxPlotAverticallineisdrawnintheboxatthelocationofthemedian(secondquartile).Q1=445Q3=525Q2=475Example:ApartmentRentsBoxPlotLimitsarelocated(notdrawn)usingtheinterquartilerange(IQR).Dataoutsidetheselimitsareconsideredoutliers.Thelocationsofeachoutlierisshownwiththesymbol
*. continuedBoxPlotLowerLimit:Q1-1.5(IQR)=445-1.5(80)=325UpperLimit:Q3+1.5(IQR)=525+1.5(80)=645Thelowerlimitislocated1.5(IQR)belowQ1.Theupperlimitislocated1.5(IQR)aboveQ3.Therearenooutliers(valueslessthan325orgreaterthan645)intheapartmentrentdata.Example:ApartmentRentsBoxPlotWhiskers(dashedlines)aredrawnfromtheendsoftheboxtothesmallestandlargestdatavaluesinsidethelimits.400425450475500525550575600625Smallestvalueinsidelimits=425Largestvalueinsidelimits=615Example:ApartmentRentsBoxPlotAnexcellentgraphicaltechniqueformakingcomparisonsamongtwoormoregroups.MeasuresofAssociation
BetweenTwoVariablesThusfarwehaveexaminednumericalmethodsusedtosummarizethedataforonevariableatatime.Oftenamanagerordecisionmakerisinterestedintherelationshipbetweentwovariables.Twodescriptivemeasuresoftherelationshipbetweentwovariablesarecovarianceandcorrelation
coefficient.CovariancePositivevaluesindicateapositiverelationship.Negativevaluesindicateanegativerelationship.Thecovarianceisameasureofthelinearassociationbetweentwovariables.CovarianceThecovarianceiscomputedasfollows:
forsamplesforpopulationsCorrelationCoefficientJustbecausetwovariablesarehighlycorrelated,itdoesnotmeanthatonevariableisthecauseoftheother.Correlationisameasureoflinearassociationandnotnecessarilycausation.Thecorrelationcoefficientiscomputedasfollows:
forsamplesforpopulationsCorrelationCoefficientCorrelationCoefficientValuesnear+1indicateastrongpositivelinear
relationship.Valuesnear-1indicateastrongnegativelinear
relationship.Thecoefficientcantakeonvaluesbetween-1and+1.Thecloserthecorrelationistozero,theweakertherelationship.Agolferisinterestedininvestigatingtherelationship,ifany,betweendrivingdistanceand18-holescore.277.6259.5269.1267.0255.6272.9697170707169AverageDrivingDistance(yds.)Average18-HoleScoreCovarianceandCorrelationCoefficientExample:GolfingStudyCovarianceandCorrelationCoefficient277.6259.5269.1267.0255.6272.9697170707169xy10.65-7.452.150.05-11.355.95-1.01.0001.0-1.0-10.65-7.4500-11.35-5.95AverageStd.Dev.267.070.0-35.408.2192.8944TotalExample:GolfingStudySampleCovarianceSampleCorrelationCoefficientCovarianceandCorrelationCoefficientExample:GolfingStudyTheWeightedMeanand
WorkingwithGroupedDataWeightedMeanMeanforGroupedDataVarianceforGroupedDataStandardDeviationforGroupedDataWeightedMeanWhenthemeaniscomputedbygivingeachdatavalueaweightthatreflectsitsimportance,itisreferredtoasaweightedmean.Inthecomputationofagradepointaverage(GPA),theweightsarethenumberofcredithoursearnedforeachgrade.Whendatavaluesvaryinimportance,theanalystmustchoosetheweightthatbestreflectstheimportanceofeachvalue.WeightedMeanwhere:
xi
=valueofobservationi
wi=weightforobservationiGroupedDataTheweightedmeancomputationcanbeusedtoobtainapproximationsofthemean,variance,andstandarddeviationforthegroupeddata.Tocomputetheweightedmean,wetreatthe
midpointofeachclassasthoughitwerethemeanofal
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026北京市东昌私募基金管理有限公司招聘3人笔试备考试题及答案解析
- 2026年河南科技职业大学单招综合素质笔试参考题库含详细答案解析
- 2026西藏日喀则吉隆县招聘大学生公益性岗位工作人员3人笔试备考试题及答案解析
- 2026广西南宁隆安县雁江镇卫生院医生招聘2人笔试备考题库及答案解析
- 2026年闽北职业技术学院高职单招职业适应性测试备考题库及答案详细解析
- 2026上海松江区中山街道大海公益服务中心招聘文员2人参考考试题库及答案解析
- 2026浙江温州市苍南县交通发展集团有限公司招聘9人笔试备考题库及答案解析
- 2026四川德阳市旌阳区城镇公益性岗位招聘27人笔试备考试题及答案解析
- 2026天津市红桥区卫生健康委所属事业单位招聘事业编制高层次人才笔试备考试题及答案解析
- 2026年青海农牧科技职业学院单招职业技能考试模拟试题含详细答案解析
- 智能网联汽车感知技术与应用 课件 项目1 智能网联汽车感知技术概述
- 低空经济在红河州乡村振兴中的实践与探索报告2025
- 港口复工复产安全培训课件
- 歌颂内蒙古的诗歌
- uom理论考试题库及答案2025
- 2025年文字排版与设计考试试题及答案
- 新能源充电桩施工方案
- 2015-2024年十年高考地理真题分类汇编专题03 地球上的大气(原卷版)
- DLT 572-2021 电力变压器运行规程
- 金相分析原理及技术
- 无责任人道主义赔偿协议书
评论
0/150
提交评论