




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3,PartB
DescriptiveStatistics:NumericalMeasuresMeasuresofDistributionShape,RelativeLocation,andDetectingOutliersExploratoryDataAnalysisMeasuresofAssociationBetweenTwoVariablesTheWeightedMeanand WorkingwithGroupedDataMeasuresofDistributionShape,
RelativeLocation,andDetectingOutliersDistributionShapez-ScoresChebyshev’sTheoremEmpiricalRuleDetectingOutliersDistributionShape:SkewnessAnimportantmeasureoftheshapeofadistributioniscalledskewness.TheformulafortheskewnessofsampledataisSkewnesscanbeeasilycomputedusingstatisticalsoftware.DistributionShape:SkewnessSymmetric(notskewed)RelativeFrequency.05.10.15.20.25.30.350Skewness=0Skewnessiszero.Meanandmedianareequal.RelativeFrequency.05.10.15.20.25.30.350DistributionShape:SkewnessModeratelySkewedLeftSkewness=-.31Skewnessisnegative.Meanwillusuallybelessthanthemedian.DistributionShape:SkewnessModeratelySkewedRightRelativeFrequency.05.10.15.20.25.30.350Skewness=.31Skewnessispositive.Meanwillusuallybemorethanthemedian.DistributionShape:SkewnessHighlySkewedRightRelativeFrequency.05.10.15.20.25.30.350Skewness=1.25Skewnessispositive(oftenabove1.0).Meanwillusuallybemorethanthemedian.Seventyefficiencyapartmentswererandomlysampledinacollegetown.Themonthlyrentpricesfortheapartmentsarelistedbelowinascendingorder.
DistributionShape:SkewnessExample:ApartmentRentsRelativeFrequency.05.10.15.20.25.30.350Skewness=.92DistributionShape:SkewnessExample:ApartmentRentsThez-scoreisoftencalledthestandardizedvalue.Itdenotesthenumberofstandarddeviationsadatavaluexiisfromthemean.z-ScoresExcel’sSTANDARDIZEfunctioncanbeusedtocomputethez-score.z-ScoresAdatavaluelessthanthesamplemeanwillhaveaz-scorelessthanzero.Adatavaluegreaterthanthesamplemeanwillhaveaz-scoregreaterthanzero.Adatavalueequaltothesamplemeanwillhaveaz-scoreofzero.Anobservation’sz-scoreisameasureoftherelativelocationoftheobservationinadataset.z-ScoreofSmallestValue(425)z-ScoresStandardizedValuesforApartmentRentsExample:ApartmentRentsChebyshev’sTheoremAtleast(1-1/z2)oftheitemsinanydatasetwillbewithinzstandarddeviationsofthemean,wherezisanyvaluegreaterthan1.Chebyshev’stheoremrequiresz>1,butzneednotbeaninteger.Atleastofthedatavaluesmustbewithinofthemean.75%z=2standarddeviationsChebyshev’sTheoremAtleastofthedatavaluesmustbewithinofthemean.89%z=3standarddeviationsAtleastofthedatavaluesmustbewithinofthemean.94%z=4standarddeviationsChebyshev’sTheoremLetz=1.5with=490.80ands=54.74Atleast(1-1/(1.5)2)=1-0.44=0.56or56%oftherentvaluesmustbebetween-z(s)=490.80-1.5(54.74)=409and+z(s)=490.80+1.5(54.74)=573(Actually,86%oftherentvaluesarebetween409and573.)Example:ApartmentRentsEmpiricalRuleWhenthedataarebelievedtoapproximateabell-shapeddistribution…Theempiricalruleisbasedonthenormaldistribution,whichiscoveredinChapter6.Theempiricalrulecanbeusedtodeterminethepercentageofdatavaluesthatmustbewithinaspecifiednumberofstandarddeviationsofthemean.EmpiricalRule Fordatahavingabell-shapeddistribution:ofthevaluesofanormalrandomvariablearewithinofitsmean.68.26%+/-1standarddeviationofthevaluesofanormalrandomvariablearewithinofitsmean.95.44%+/-2standarddeviationsofthevaluesofanormalrandomvariablearewithinofitsmean.99.72%+/-3standarddeviationsEmpiricalRulexm–3sm–1sm–2sm+1sm+2sm+3sm68.26%95.44%99.72%DetectingOutliersAnoutlierisanunusuallysmallorunusuallylargevalueinadataset.Adatavaluewithaz-scorelessthan-3orgreaterthan+3mightbeconsideredanoutlier.Itmightbe:anincorrectlyrecordeddatavalueadatavaluethatwasincorrectlyincludedinthedatasetacorrectlyrecordeddatavaluethatbelongsinthedatasetDetectingOutliersThemostextremez-scoresare-1.20and2.27Using|z|>3asthecriterionforanoutlier,therearenooutliersinthisdataset.StandardizedValuesforApartmentRentsExample:ApartmentRentsExploratoryDataAnalysis
Exploratorydataanalysisproceduresenableustousesimplearithmeticandeasy-to-drawpicturestosummarizedata.Wesimplysortthedatavaluesintoascendingorderandidentifythefive-numbersummaryandthenconstructaboxplot.Five-NumberSummary1SmallestValueFirstQuartileMedianThirdQuartileLargestValue2345Five-NumberSummaryLowestValue=425FirstQuartile=445Median=475ThirdQuartile=525LargestValue=615Example:ApartmentRentsBoxPlotAboxplotisagraphicalsummaryofdatathatisbasedonafive-numbersummary.AkeytothedevelopmentofaboxplotisthecomputationofthemedianandthequartilesQ1and
Q3.Boxplotsprovideanotherwaytoidentifyoutliers.400425450475500525550575600625Aboxisdrawnwithitsendslocatedatthefirstandthirdquartiles.BoxPlotAverticallineisdrawnintheboxatthelocationofthemedian(secondquartile).Q1=445Q3=525Q2=475Example:ApartmentRentsBoxPlotLimitsarelocated(notdrawn)usingtheinterquartilerange(IQR).Dataoutsidetheselimitsareconsideredoutliers.Thelocationsofeachoutlierisshownwiththesymbol
*. continuedBoxPlotLowerLimit:Q1-1.5(IQR)=445-1.5(80)=325UpperLimit:Q3+1.5(IQR)=525+1.5(80)=645Thelowerlimitislocated1.5(IQR)belowQ1.Theupperlimitislocated1.5(IQR)aboveQ3.Therearenooutliers(valueslessthan325orgreaterthan645)intheapartmentrentdata.Example:ApartmentRentsBoxPlotWhiskers(dashedlines)aredrawnfromtheendsoftheboxtothesmallestandlargestdatavaluesinsidethelimits.400425450475500525550575600625Smallestvalueinsidelimits=425Largestvalueinsidelimits=615Example:ApartmentRentsBoxPlotAnexcellentgraphicaltechniqueformakingcomparisonsamongtwoormoregroups.MeasuresofAssociation
BetweenTwoVariablesThusfarwehaveexaminednumericalmethodsusedtosummarizethedataforonevariableatatime.Oftenamanagerordecisionmakerisinterestedintherelationshipbetweentwovariables.Twodescriptivemeasuresoftherelationshipbetweentwovariablesarecovarianceandcorrelation
coefficient.CovariancePositivevaluesindicateapositiverelationship.Negativevaluesindicateanegativerelationship.Thecovarianceisameasureofthelinearassociationbetweentwovariables.CovarianceThecovarianceiscomputedasfollows:
forsamplesforpopulationsCorrelationCoefficientJustbecausetwovariablesarehighlycorrelated,itdoesnotmeanthatonevariableisthecauseoftheother.Correlationisameasureoflinearassociationandnotnecessarilycausation.Thecorrelationcoefficientiscomputedasfollows:
forsamplesforpopulationsCorrelationCoefficientCorrelationCoefficientValuesnear+1indicateastrongpositivelinear
relationship.Valuesnear-1indicateastrongnegativelinear
relationship.Thecoefficientcantakeonvaluesbetween-1and+1.Thecloserthecorrelationistozero,theweakertherelationship.Agolferisinterestedininvestigatingtherelationship,ifany,betweendrivingdistanceand18-holescore.277.6259.5269.1267.0255.6272.9697170707169AverageDrivingDistance(yds.)Average18-HoleScoreCovarianceandCorrelationCoefficientExample:GolfingStudyCovarianceandCorrelationCoefficient277.6259.5269.1267.0255.6272.9697170707169xy10.65-7.452.150.05-11.355.95-1.01.0001.0-1.0-10.65-7.4500-11.35-5.95AverageStd.Dev.267.070.0-35.408.2192.8944TotalExample:GolfingStudySampleCovarianceSampleCorrelationCoefficientCovarianceandCorrelationCoefficientExample:GolfingStudyTheWeightedMeanand
WorkingwithGroupedDataWeightedMeanMeanforGroupedDataVarianceforGroupedDataStandardDeviationforGroupedDataWeightedMeanWhenthemeaniscomputedbygivingeachdatavalueaweightthatreflectsitsimportance,itisreferredtoasaweightedmean.Inthecomputationofagradepointaverage(GPA),theweightsarethenumberofcredithoursearnedforeachgrade.Whendatavaluesvaryinimportance,theanalystmustchoosetheweightthatbestreflectstheimportanceofeachvalue.WeightedMeanwhere:
xi
=valueofobservationi
wi=weightforobservationiGroupedDataTheweightedmeancomputationcanbeusedtoobtainapproximationsofthemean,variance,andstandarddeviationforthegroupeddata.Tocomputetheweightedmean,wetreatthe
midpointofeachclassasthoughitwerethemeanofal
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃小学数学课题申报书
- 聋哑人群探究课题申报书
- 课题立项申报书范文思政
- 厅级课题申报书范例
- 卖楼房定金合同范例
- 环保类课题申报书
- 省级文旅课题申报书
- 取水证合同范本
- 化肥订单合同范本
- 单位定制 服装合同范本
- 人教版二年级数学下册全册单元测试题
- 2025年湖南城建职业技术学院单招职业适应性测试题库及答案一套
- 2025年黑龙江商业职业学院单招职业技能测试题库及答案一套
- 教科版科学三下开学第一课《科学家这样做-童第周》
- 护理质量与护理安全积分管理考核标准
- 2024年汶川县欣禹林业有限责任公司工作人员招聘考试真题
- 国家安全教育大学生读本高教社2024年8月版教材讲义-第一章完全准确领会总体国家安全观
- 疲劳断裂材料性能优化-深度研究
- 2025年广州市黄埔区文冲街招聘“村改居”社区治安联防队员36人历年高频重点模拟试卷提升(共500题附带答案详解)
- 2024年呼和浩特职业学院单招职业适应性测试题库参考答案
- 小学二年级有余数的除法口算题(共300题)
评论
0/150
提交评论