版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市石门县新关镇中学高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知不等式的解集是,则不等式的解集是(
)A.(2,3)
B.
C.
D.参考答案:A2.若函数在上为减函数,则实数的取值范围是(
)ABC
D.参考答案:B略3.直线的斜率为(
)A. B. C. D.参考答案:A直线方程即:,整理为斜截式即,据此可知直线的斜率为.
4.已知双曲线的一个焦点坐标是(5,0),则双曲线的渐近线方程是()A. B. C. D.参考答案:B【考点】双曲线的简单性质.【分析】利用双曲线的一个焦点坐标是(5,0),求出m的值,从而可求双曲线的渐近线方程.【解答】解:由题意,双曲线的焦点在x轴,且,∵一个焦点是(5,0),∴∴双曲线的渐近线方程为.故选:B.5.设,则这四个数的大小关系是(
)
参考答案:D6.直线2x+3y-9=0与直线6x+my+12=0平行,则两直线间的距离为()A. B.
C.21 D.13参考答案:B∵与平行,∴,∴m=9.将直线化为2x+3y+4=0,故其距离.故选B.
7.按流程图的程序计算,若开始输入的值为,则输出的的值是(
)
A. B. C. D.参考答案:D略8.下列说法中正确的是
A.互相垂直的两条直线的直观图仍然是互相垂直的两条直线B.梯形的直观图可能是平行四边形C.矩形的直观图可能是梯形D.正方形的直观图可能是平行四边形参考答案:D9.点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是(
)A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1参考答案:A【考点】轨迹方程.【专题】直线与圆.【分析】设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.【解答】解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.【点评】本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.10.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(
)A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=
.参考答案:±2【考点】3O:函数的图象;52:函数零点的判定定理.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值,∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0,∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故答案为:±2.12.函数+1,则
.参考答案:113.命题,,则
.参考答案:,
因为的否定为所以,
14.已知某校一间办公室有四位老师甲、乙、丙、丁,在某天的某个时刻,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印资料:(1)甲不在查资料,也不在写教案;(2)乙不在打印资料,也不在查资料;(3)丙不在批改作业,也不在打印资料;(4)丁不在写教案,也不在查资料.此外还可确定,如果甲不在打印资料,那么丙不在查资料,根据以上消息可以判断甲在_______.参考答案:打印材料【分析】结合条件(1),先假设甲在批改作业,再结合题中其它条件分析,推出矛盾,即可得出结果.【详解】因为甲不在查资料,也不在写教案,若甲在批改作业,根据“甲不在打印资料,那么丙不在查资料”以及“丙不在批改作业,也不在打印资料”得,丙在写教案;又“乙不在打印资料,也不在查资料”,则乙可能在批改作业或写教案,即此时乙必与甲或丙工作相同,不满足题意;所以甲不在批改作业;因此甲在打印资料.故答案为:打印材料【点睛】本题主要考查简单的合情推理,结合题中条件直接分析即可,属于常考题型.15.长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的直径长为参考答案:16.已知正数x,y满足x2+2xy﹣3=0,则2x+y的最小值是
.参考答案:3【考点】基本不等式.【分析】用x表示y,得到2x+y关于x的函数,利用基本不等式得出最小值.【解答】解:∵x2+2xy﹣3=0,∴y=,∴2x+y=2x+==≥2=3.当且仅当即x=1时取等号.故答案为:3.17.某地区为了了解70~80岁老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查.下表是这50位老人日睡眠时间的频率分布表.
序号(I)分组(睡眠时间)组中值(GI)频数(人数)频率(FI)1[4,5)4.560.122[5,6)5.5100.203[6,7)6.5200.404[7,8)7.5100.205[8,9]8.540.08在上述统计数据的分析中,一部分计算见流程图,则输出的S的值是________.参考答案:6.42三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在100000张奖券中设有10个一等奖,100个二等奖,300个三等奖、从中买一张奖券,那么此人中奖的概率是多少?参考答案:解析:P==19.(12分)在中,角对的边分别为,且(Ⅰ)求的值;(Ⅱ)若,求的面积参考答案:(2)由余弦定理得c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab=(a+b)2﹣3ab,又a+b=ab,所以(ab)2﹣3ab﹣4=0,
…(8分)解得ab=4或ab=﹣1(舍去)
…(10分)20.已知等差数列满足,.的前项和为.(1)求及;(2)令,求数列的前项和.参考答案:解(1)设等差数列的首项为,公差为,由于,,所以,解得.由于,,所以.(2)因为,所以,因此===,所以数列的前项和.略21.设命题p:?x∈[﹣1,1],x+m>0命题q:方程表示双曲线.(1)写出命题p的否定;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.参考答案:解:(1)命题p的否定:?x∈[﹣1,1],x+m≤0;(2)由题意可知,p为真时,m>﹣x≥﹣1,得m>﹣1,q为真时,(m﹣4)(m+2)>0,解得m>﹣4或m<﹣2,因为“p或q”为真,“p且q”为假,所以p,q一真一假,当p为真且q为假时,,解得﹣1<m≤4;当p为假且q为真时,解得m<﹣2;综上,实数m的取值范围是m<﹣2或﹣1<m≤4.考点:复合命题的真假;命题的否定.专题:圆锥曲线的定义、性质与方程;简易逻辑.分析:(1)特称命题的否定是特称改全称,否定结论;(2)先解p,q为真时m的取值,然后由“p或q”为真,“p且q”为假,所以p,q一真一假,分类讨论求m的范围.解答:解:(1)命题p的否定:?x∈[﹣1,1],x+m≤0;(2)由题意可知,p为真时,m>﹣x≥﹣1,得m>﹣1,q为真时,(m﹣4)(m+2)>0,解得m>﹣4或m<﹣2,因为“p或q”为真,“p且q”为假,所以p,q一真一假,当p为真且q为假时,,解得﹣1<m≤4;当p为假且q为真时,解得m<﹣2;综上,实数m的取值范围是m<﹣2或﹣1<m≤4.点评:本题考查命题的真假判断,注意对联接词的逻辑关系的判断22.一缉私艇发现在北偏东方向,距离12nmile的海面上有一走私船正以10nmile/h的速度沿东偏南方向逃窜.缉私艇的速度为14nmile/h,若要在最短的时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防疫工作先进事迹简介(6篇)
- 《供配电技术》6.9 教案
- 景区讲解员实习总结(11篇)
- 有关校园安全的演讲稿范文(33篇)
- 幼儿园生命教育的教案6篇
- 销售公司总经理年会发言稿
- 企业为居民供水合同
- 山西省长治市(2024年-2025年小学五年级语文)人教版竞赛题(上学期)试卷及答案
- 2024年民航运输项目资金筹措计划书代可行性研究报告
- 高考生物复习教案生命活动的调节
- 《旅行社经营与管理》教学课件汇总全套电子教案(完整版)
- 消防工程技术标书(暗标)
- DBJ∕T 15-138-2018 建筑电气防火检测技术规程
- 北师大版数学七年级上册期中测试题【含答案】(共4套)
- 2022年WABCO防抱死系统
- 离婚登记申请受理回执单(民法典版)
- 《过敏性休克》PPT课件(PPT 32页)
- 宿舍管理制度及台账
- 多吃健脑食物,预防老年痴呆症
- 清洗效果监测方法--ppt课件
- 企业员工职业生涯规划表模板
评论
0/150
提交评论