版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省南充市阆中老观中学高三数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,则
(
)
A、32
B、16
C、
D、参考答案:C2.在等比数列{an}中,已知a3=6,a3+a5+a7=78,则a5=()A.12 B.18 C.24 D.36参考答案:B【考点】等比数列的通项公式.【分析】设公比为q,由题意求出公比,再根据等比数列的性质即可求出.【解答】解:设公比为q,∵a3=6,a3+a5+a7=78,∴a3+a3q2+a3q4=78,∴6+6q2+6q4=78,解得q2=3∴a5=a3q2=6×3=18,故选:B【点评】本题考查了等比数列的性质,考查了学生的计算能力,属于基础题.3.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A. B. C. D.参考答案:B【考点】异面直线及其所成的角.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选B.4.执行如图所示的程序框图,输出的值为(A)2
(B)(C)
(D)参考答案:C5.已知点A(﹣1,0)、B(1,3),向量=(2k﹣1,2),若⊥,则实数k的值为()A.﹣2B.﹣1C.1D.2参考答案:B略6.已知函数若方程有三个不同的实数根,则实数a的取值范围是(
)A.(1,3)
B.(0,3)
C.(0,2)
D.(0,1)参考答案:B7.已知是上的减函数,那么的取值范围是(
)A.
B.
C.
D.参考答案:C8.设是虚数单位,是复数的共轭复数,若,则A.
B.
C
D.参考答案:A略9.如右图所示,使电路接通,开关不同的开闭方式有A.11种
B.20种
C.21种
D.12种
参考答案:C若前一个开关只接通一个,则后一个有,此时有种,若前一个开关接通两一个,则后一个有,所以总共有,选C.10.已知偶函数在上单调递减,则和的大小关系为
(
)
A.>
B.<C.=
D.和关系不定参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在某个容量为的样本的频率分布直方图中,共有个小长方形,若中间一个小长方形的面积等于其他个小长方形面积和的,则中间一组的频数为
.参考答案:5012.在平面几何里,已知的两边互相垂直,且,则边上的高;现在把结论类比到空间:三棱锥的三条侧棱两两相互垂直,平面,且,则点到平面的距离
.参考答案:13.已知变量的最大值是
.参考答案:2
14.已知(ax+1)5的展开式中x2的系数与的展开式中x3的系数相等,则a=.参考答案:考点:二项式定理的应用;二项式系数的性质.专题:计算题.分析:分别计算出(ax+1)5的展开式中x2的系数和的展开式中x3的系数,利用它们相等,建立方程关系,进行求解即可.解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,与的展开式中x3的项为=5x3,x3的系数为5,∴10a2=5,即a2=,解得a=.故答案为:.点评:本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键.
15.在等式“1=+”两个括号内各填入一个正整数,使它们的和最小,则填入的两个数是
参考答案:4和12略16.《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷:“物不知数”中有如下问题:“今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二,问:物几何?”其意思为:“现有一堆物品,不知它的数目,3个3个数,剩2个,5个5个数,剩3个,7个7个数,剩2个,问这堆物品共有多少个?”试计算这堆物品至少有
个.参考答案:23【考点】F4:进行简单的合情推理.【分析】根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.【解答】解:我们首先需要先求出三个数:第一个数能同时被3和5整除,但除以7余1,即15;第二个数能同时被3和7整除,但除以5余1,即21;第三个数能同时被5和7整除,但除以3余1,即70;然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.最后,再减去3、5、7最小公倍数的整数倍,可得:233﹣105×2=23,或者105k+23(k为正整数).∴这堆物品至少有23,故答案为:23.【点评】本题考查的是带余数的除法,简单的合情推理的应用,根据题意下求出15、21、70这三个数是解答此题的关键,属于中档题.17.若二次函数在区间内至少存在一点使得则实数的取值范围是_______________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.
某班联欢晚会玩飞镖投掷游戏,规则如下:
每人连续投掷5支飞镖,累积3支飞镖掷中目标即可获奖;否则不获奖.同时要求在以下两种情况下中止投掷:①累积3支飞镖掷中目标;②累积3支飞镖没有掷中目标.
已知小明同学每支飞镖掷中目标的概率是常数,且掷完3支飞镖就中止投掷的概率为.(1)
求的值;(2)
记小明结束游戏时,投掷的飞镖支数为,求的分布列和数学期望.参考答案:略19.已知向量=(sinA,sinB),=(cosB,cosA),=sin2C,且△ABC的角A,B,C所对的边分别为a,b,c.(1)求角C的大小;(2)若sinA,sinC,sinB成等差数列,且,求c.参考答案:.解:(1),又,
………3分又
………4分
(2)由已知得,即
又∵,∴
………6分
由余弦定理得:
∴
………8分20.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.参考答案:【考点】直线与圆锥曲线的关系;抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由x2=2y得y=x2,则y′=x,由导数的几何意义求出以P为切点的切线的斜率,代入点斜式方程化简,把点P(m,n)代入抛物线的方程,得到n与m的关系,再代入切线方程化简即可;(Ⅱ)判断直线MF与直线l垂直,由切线l方程和题意求出M的坐标,由斜率公式求出kMF,根据斜率之积是﹣1,即可证明结论.【解答】证明:(Ⅰ)由抛物线C:x2=2y得,y=x2,则y′=x,∴在点P(m,n)切线的斜率k=m,∴切线方程是y﹣n=m(x﹣m),即y﹣n=mx﹣m2,又点P(m,n)是抛物线上一点,∴m2=2n,∴切线方程是mx﹣2n=y﹣n,即mx=y+n
…(Ⅱ)直线MF与直线l位置关系是垂直.由(Ⅰ)得,设切点为P(m,n),则切线l方程为mx=y+n,∴切线l的斜率k=m,点M(,0),又点F(0,),此时,kMF====…∴k?kMF=m×()=﹣1,∴直线MF⊥直线l
…【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题.21.济南市某中学课外兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分別到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料(表):日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差1011131286就诊人数(个)222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想.其中回归系数公式,,参考答案:(1)设抽到相邻两个月的数据为亊件,因为从组数据中选取组数据共有种情况,每种情况都是等可能出现的,其中抽到相邻两个月的数据的情况有种,所以.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国木门行业发展现状投资策略分析报告
- 2024-2030年中国服装干洗机行业销售预测及未来5发展趋势报告
- 2024-2030年中国智能车载摄像机行业竞争力分析及未来5发展趋势报告
- 2024-2030年中国智慧城市行业发展状况规划分析报告
- 2024-2030年中国景观设计行业创新模式及未来发展策略研究报告
- 橡胶制品的产品供应与供应商选择考核试卷
- 2024至2030年蕨麻项目投资价值分析报告
- 2024-2030年中国数据银行市场转型升级及投资战略建议报告
- 2024至2030年调风阀项目投资价值分析报告
- 解读数据可视化与交互设计
- 财政收支业务管理制度
- 精神科病例分享演讲比赛
- 大学生职业生涯规划测绘地理信息技术专业
- 小学新教材解读培训
- MOOC 全球化与中国文化-西南交通大学 中国大学慕课答案
- 摊位布局规划方案
- 注塑工艺损耗率
- 钢结构漏雨维修方案
- (含附件)ktv承包协议书模板-2024
- (高清版)DZT 0289-2015 区域生态地球化学评价规范
- 2024年强基计划解读 课件-2024届高三下学期主题班会
评论
0/150
提交评论