2024届云南省保山市施甸县九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2024届云南省保山市施甸县九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2024届云南省保山市施甸县九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2024届云南省保山市施甸县九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2024届云南省保山市施甸县九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省保山市施甸县九年级数学第一学期期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40° B.50° C.80° D.100°2.下列图形中,是中心对称图形的是()A. B. C. D.3.己知是一元二次方程的一个根,则的值为()A.1 B.-1或2 C.-1 D.04.已知、是一元二次方程的两个实数根,则的值为()A.-1 B.0 C.1 D.25.在下列各式中,运算结果正确的是()A.x2+x2=x4 B.x﹣2x=﹣xC.x2•x3=x6 D.(x﹣1)2=x2﹣16.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有一次正面朝上 B.必有5次正面朝上C.可能有7次正面朝上 D.不可能有10次正面朝上7.在平面直角坐标系中,对于二次函数,下列说法中错误的是()A.的最小值为1B.图象顶点坐标为,对称轴为直线C.当时,的值随值的增大而增大,当时,的值随值的增大而减小D.当时,的值随值的增大而减小,当时,的值随值的增大而增大8.解方程最适当的方法是()A.直接开平方法 B.配方法 C.因式分解法 D.公式法9.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为()A. B. C. D.10.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.2411.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.12.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.二、填空题(每题4分,共24分)13.若AB是⊙O的直径,AC是弦,OD⊥AC于点D,若OD=4,则BC=_____.14.在一个不透明的口袋中,装有1个红球若干个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为,则此口袋中白球的个数为____________.15.如图,已知中,,,,将绕点顺时针旋转得到,点、分别为、的中点,若点刚好落在边上,则______.16.玫瑰花的花粉直径约为0.000084米,数据0.000084用科学记数法表示为__________.17.某校开展“节约每滴水”活动,为了了解开展活动一个月以来节约用水情况,从九年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如下表:节水量()0.20.250.30.4家庭数(个)4637请你估计这400名同学的家庭一个月节约用水的总量大约是_________.18.如图,已知⊙O的半径为1,AB,AC是⊙O的两条弦,且AB=AC,延长BO交AC于点D,连接OA,OC,若AD2=AB•DC,则OD=__.三、解答题(共78分)19.(8分)已知反比例函数的图象过点P(-1,3),求m的值和该反比例函数的表达式.20.(8分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.21.(8分)已知二次函数y=﹣2x2+bx+c的图象经过点(0,6)和(1,8).(1)求这个二次函数的解析式;(2)①当x在什么范围内时,y随x的增大而增大?②当x在什么范围内时,y>0?22.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.(1)求证:D是BC的中点(2)若DE=3,AD=1,求⊙O的半径.23.(10分)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品脚玩具上x元(0<x<60)元,销售利润为w元,请求出w关于x的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.24.(10分)已知二次函数的图象顶点是,且经过,求这个二次函数的表达式.25.(12分)总书记指出,到2020年全面建成小康社会,实现第一个百年奋斗目标.为贯彻的指示,实现精准脱贫,某区相关部门指导对口帮扶地区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量(袋)与每袋的售价(元)之间关系如下表:每袋的售价(元)…2030…日销售量(袋)…2010…如果日销售量y(袋)是每袋的售价x(元)的一次函数,请回答下列问题:(1)求日销售量y(袋)与每袋的售价x(元)之间的函数表达式;(2)求日销售利润(元)与每袋的售价(元)之间的函数表达式;(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?(提示:每袋的利润=每袋的售价每袋的成本)26.如图,△ABC中,AB=AC,BE⊥AC于E,D是BC中点,连接AD与BE交于点F,求证:△AFE∽△BCE.

参考答案一、选择题(每题4分,共48分)1、D【分析】由题意直接根据圆周角定理求解即可.【题目详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选:D.【题目点拨】本题考查圆周角定理的运用,熟练掌握圆周角定理是解题的关键.2、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【题目详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【题目点拨】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键.3、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x=2代入方程求解可得m的值.【题目详解】把x=2代入方程(m﹣2)x2+4x﹣m2=0得到(m﹣2)+4﹣m2=0,解得:m=﹣2或m=2.∵m﹣2≠0,∴m=﹣2.故选:C.【题目点拨】本题考查了一元二次方程的解的定义,解题的关键是理解一元二次方程解的定义,属于基础题型.4、C【分析】根据根与系数的关系即可求出的值.【题目详解】解:∵、是一元二次方程的两个实数根∴故选C.【题目点拨】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=是解决此题的关键.5、B【分析】根据合并同类项、完全平方公式及同底数幂的乘法法则进行各选项的判断即可.【题目详解】解:A、x2+x2=2x2,故本选项错误;B、x﹣2x=﹣x,故本选项正确;C、x2•x3=x5,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选B.【题目点拨】本题主要考查了合并同类项、完全平方公式及同底数幂的乘法运算等,掌握运算法则是解题的关键.6、C【分析】利用不管抛多少次,硬币正面朝上的概率都是,进而得出答案.【题目详解】解:因为一枚质地均匀的硬币只有正反两面,

所以不管抛多少次,硬币正面朝上的概率都是,

所以掷一枚质地均匀的硬币10次,

可能有7次正面向上;

故选:C.【题目点拨】本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.7、C【分析】根据,可知该函数的顶点坐标为(2,1),对称轴为x=2,最小值为1,当x<2时,y随x的增大而减小,当x≥2时,y随x的增大而增大,进行判断选择即可.【题目详解】由题意可知,该函数当x<2时,y随x的增大而减小,当x≥2时,y随x的增大而增大,故C错误,所以答案选C.【题目点拨】本题考查的是一元二次函数顶点式的图像性质,能够根据顶点式得出其图像的特征是解题的关键.8、C【分析】根据解一元二次方程的方法进行判断.【题目详解】解:先移项得到,然后利用因式分解法解方程.故选:C.【题目点拨】本题考查了解一元二次方程——因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.9、B【分析】利用树状图分析,即可得出答案.【题目详解】共8种情况,出现“一次正面,两次反面”的情况有3种,所以概率=,故答案选择B.【题目点拨】本题考查的是求概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、B【解题分析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故选B.【题目点拨】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.11、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【题目详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【题目点拨】本题考查勾股定理,关键是利用垂径定理解答.12、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【题目详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【题目点拨】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.二、填空题(每题4分,共24分)13、1【分析】由OD⊥AC于点D,根据垂径定理得到AD=CD,即D为AC的中点,则OD为△ABC的中位线,根据三角形中位线性质得到OD=BC,然后把OD=4代入计算即可.【题目详解】∵OD⊥AC于点D,∴AD=CD,即D为AC的中点,∵AB是⊙O的直径,∴点O为AB的中点,∴OD为△ABC的中位线,∴OD=BC,∴BC=2OD=2×4=1.故答案为:1.【题目点拨】本题考查了三角形中位线定理以及垂径定理的运用.熟记和圆有关的各种性质定理是解题的关键.14、3【分析】根据概率公式即可得出总数,再根据总数算出白球个数即可.【题目详解】∵摸到红球的概率为,且袋中只有1个红球,∴袋中共有4个球,∴白球个数=4-1=3.故答案为:3.【题目点拨】本题考查概率相关的计算,关键在于通过概率求出总数即可算出白球.15、【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【题目详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=,∵DM⊥BC,DC=DB,∴CM=BM=,∴EM=CE-CM=5-3=2,∵DM=,∴由勾股定理得,DE=,∵CD=CE=5,CN⊥DE,∴DN=EN=,∴由勾股定理得,CN=,∴sin∠DEC=.故答案为:.【题目点拨】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.16、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】数据0.000084用科学记数法表示为故答案为:【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、1【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【题目详解】解:20名同学各自家庭一个月平均节约用水是:

(0.2×4+0.25×6+0.3×3+0.4×7)÷20=0.3(m3),

因此这400名同学的家庭一个月节约用水的总量大约是:

400×0.3=1(m3),

故答案为:1.【题目点拨】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.18、.【分析】可证△AOB≌△AOC,推出∠ACO=∠ABD,OA=OC,∠OAC=∠ACO=∠ABD,∠ADO=∠ADB,即可证明△OAD∽△ABD;依据对应边成比例,设OD=x,表示出AB、AD,根据AD2=AB•DC,列方程求解即可.【题目详解】在△AOB和△AOC中,∵AB=AC,OB=OC,OA=OA,∴△AOB≌△AOC(SSS),∴∠ABO=∠ACO,∵OA=OA,∴∠ACO=∠OAD,∵∠ADO=∠BDA,∴△ADO∽△BDA,∴,设OD=x,则BD=1+x,∴,∴OD,AB,∵DC=AC﹣AD=AB﹣AD,AD2=AB•DC,()2═(),整理得:x2+x﹣1=0,解得:x或x(舍去),因此AD,故答案为.【题目点拨】本题考查了圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,利用参数解决问题是数学解题中经常用到的方法.三、解答题(共78分)19、2;.【分析】把点P的坐标代入函数解析式求得m的值即可【题目详解】解:把点P(-1,3)代入,得.解得.把m=2代入,得,即.∴反比例函数的表达式为.【题目点拨】本题考查了待定系数法确定函数关系式,反比例函数图象上点的坐标特征.难度不大,熟悉函数图象的性质即可解题.20、①证明见解析;(2)S菱形CODP=24.【解题分析】①根据DP∥AC,CP∥BD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结论;②利用S△COD=12S菱形CODP,先求出S△COD,即可得【题目详解】证明:①∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=12BD,OC=12∴OD=OC,∴四边形CODP是菱形.②∵AD=6,AC=10∴DC=AC2∵AO=CO,∴S△COD=12S△ADC=12×12∵四边形CODP是菱形,∴S△COD=12S菱形CODP=12∴S菱形CODP=24【题目点拨】本题考查了矩形性质和菱形的判定,解题关键是熟练掌握菱形的判定方法,由矩形的性质得出OC=OD.21、(1)y=﹣2x2+4x+6;(2)①当x<1时,y随x的增大而增大;②当﹣1<x<3时,y>1【分析】(1)根据二次函数y=﹣2x2+bx+c的图象经过点(1,6)和(1,8),可以求得该抛物线的解析式;(2)①根据(1)求得函数解析式,将其化为顶点式,然后根据二次函数的性质即可得到x在什么范围内时,y随x的增大而增大;②根据(1)中的函数解析式可以得到x在什么范围内时,y>1.【题目详解】(1)∵二次函数y=﹣2x2+bx+c的图象经过点(1,6)和(1,8),∴,得,即该二次函数的解析式为y=﹣2x2+4x+6;(2)①∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴该函数的对称轴是x=1,函数图象开口向下,∴当x<1时,y随x的增大而增大;②当y=1时,1=﹣2x2+4x+6=﹣2(x﹣3)(x+1),解得,x1=3,x2=﹣1,∴当﹣1<x<3时,y>1.【题目点拨】此题主要考查二次函数的图像与性质,解题的关键是根据待定系数法求出二次函数的解析式..22、(1)证明见解析;(2)【分析】(1)根据圆周角定理、等腰三角形的三线合一的性质即可证得结论;(2)根据圆周角定理及等腰三角形的判定得到DE=BD=3,再根据勾股定理求出AB,即可得到半径的长.【题目详解】(1)∵AB是⊙O直径∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即点D是BC的中点;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=∠E,∴DE=DC,∵DC=BD,∴DE=BD=3,∵AD=1,又∠ADB=90°,∴AB=,∴⊙O的半径=.【题目点拨】此题考查圆周角定理,等腰三角形的三线合一的性质及等角对等边的判定,勾股定理.23、(1)w=﹣10x2+1300x﹣30000;(2)最大利润是1元,此时玩具的销售单价应定为65元.【分析】(1)利用销售单价每涨1元,就会少售出10件玩具,再结合每件玩具的利润乘以销量=总利润进而求出即可;(2)利用每件玩具的利润乘以销量=总利润得出函数关系式,进而求出最值即可.【题目详解】(1)根据题意得:w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000;(2)w=[600﹣10(x﹣40)](x﹣30)=﹣10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论