2024届沈阳市重点中学数学九上期末预测试题含解析_第1页
2024届沈阳市重点中学数学九上期末预测试题含解析_第2页
2024届沈阳市重点中学数学九上期末预测试题含解析_第3页
2024届沈阳市重点中学数学九上期末预测试题含解析_第4页
2024届沈阳市重点中学数学九上期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届沈阳市重点中学数学九上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在⊙O中,弦BC//OA,AC与OB相交于点M,∠C=20°,则∠MBC的度数为().A.30° B.40°C.50° D.60°2.下列四个数中是负数的是()A.1 B.﹣(﹣1) C.﹣1 D.|﹣1|3.对于二次函数,下列说法正确的是()A.图象开口方向向下; B.图象与y轴的交点坐标是(0,-3);C.图象的顶点坐标为(1,-3); D.抛物线在x>-1的部分是上升的.4.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是()A.铜陵市明天将有75%的时间降水 B.铜陵市明天将有75%的地区降水C.铜陵市明天降水的可能性比较大 D.铜陵市明天肯定下雨5.如图,A、B、C是⊙O上互不重合的三点,若∠CAO=∠CBO=20°,则∠AOB的度数为()A.50° B.60° C.70° D.80°6.中,,,,则的值是()A. B. C. D.7.如图一块直角三角形ABC,∠B=90°,AB=3,BC=4,截得两个正方形DEFG,BHJN,设S1=DEFG的面积,S2=BHJN的面积,则S1、S2的大小关系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能确定8.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为()A.2 B.2 C.4﹣2 D.2﹣29.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣(t﹣4)2+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3s B.4s C.5s D.6s10.菱形中,,对角线相交于点,以为圆心,以3为半径作,则四个点在上的个数为()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.抛物线的顶点坐标是____________12.分解因式:__________.13.在平面直角坐标系中,若点与点关于原点对称,则__________.14.如图,,如果,那么_________________.15.已知实数满足,且,,则抛物线图象上的一点关于抛物线对称轴对称的点为__________.16.方程的根是____.17.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.18.一个圆锥的底面圆的半径为2,母线长为4,则它的侧面积为______.三、解答题(共66分)19.(10分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=的图象上,OA=1,OC=6,试求出正方形ADEF的边长.20.(6分)在平面直角坐标系xOy中,直线y=x+b(k≠0)与双曲线一个交点为P(2,m),与x轴、y轴分别交于点A,B两点.(1)求m的值;(2)求△ABO的面积;21.(6分)如图,在中,,,.动点从点出发,沿线段向终点以/的速度运动,同时动点从点出发,沿折线以/的速度向终点运动,当有一点到达终点时,另一点也停止运动,以、为邻边作设▱与重叠部分图形的面积为点运动的时间为.(1)当点在边上时,求的长(用含的代数式表示);(2)当点落在线段上时,求的值;(3)求与之间的函数关系式,并写出自变量的取值范围.22.(8分)如图,在中,,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点.(1)求证:四边形是菱形;(2)若,,求的长.23.(8分)解方程:24.(8分)解方程:(1)(公式法)(2)25.(10分)在边长为1个单位长度的正方形网格中,建立如图所示的平面直角坐标系,的顶点都在格点上,请解答下列问题:(1)作出向左平移4个单位长度后得到的,并写出点的坐标;(2)作出关于原点O对称的,并写出点的坐标;(3)已知关于直线L对称的的顶点的坐标为(-4,-2),请直接写出直线L的函数解析式.26.(10分)如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于多少;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.

参考答案一、选择题(每小题3分,共30分)1、B【分析】由圆周角定理(同弧所对的圆周角是圆心角的一半)得到∠AOB,再由平行得∠MBC.【题目详解】解:∵∠C=20°

∴∠AOB=40°

又∵弦BC∥半径OA

∴∠MBC=∠AOB=40°,故选:B.【题目点拨】熟练掌握圆周角定理,平行线的性质是解答此题的关键.2、C【解题分析】大于0的是正数,小于0的是负数,据此进行求解即可.【题目详解】∵1>0,﹣(﹣1)=1>0,|﹣1|=1>0,∴A,B,D都是正数,∵﹣1<0,∴﹣1是负数.故选:C.【题目点拨】本题主要考查正数的概念,掌握正数大于0,是解题的关键.3、D【解题分析】二次函数y=2(x+1)2-3的图象开口向上,顶点坐标为(-1,-3),对称轴为直线x=-1;当x=0时,y=-2,所以图像与y轴的交点坐标是(0,-2);当x>-1时,y随x的增大而增大,即抛物线在x>-1的部分是上升的,故选D.4、C【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【题目详解】解:根据概率表示某事情发生的可能性的大小,分析可得:

A、铜陵市明天将有75%的时间降水,故此选项错误;

B、铜陵市明天将有75%的地区降水,故此选项错误;

C、明天降水的可能性为75%,比较大,故此选项正确;

D、明天肯定下雨,故此选项错误;

故选:C.【题目点拨】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.5、D【分析】连接CO并延长交⊙O于点D,根据等腰三角形的性质,得∠CAO=∠ACO,∠CBO=∠BCO,结合三角形外角的性质,即可求解.【题目详解】连接CO并延长交⊙O于点D,∵∠CAO=∠ACO,∠CBO=∠BCO,∴∠CAO=∠ACO=∠CBO=∠BCO=20°,∴∠AOD=∠CAO+∠ACO=40°,∠BOD=∠CBO+∠BCO=40°,∴∠AOB=∠AOD+∠BOD=80°.故选D.【题目点拨】本题主要考查圆的基本性质,三角形的外角的性质以及等腰三角形的性质,添加和数的辅助线,是解题的关键.6、D【分析】根据勾股定理求出BC的长度,再根据cos函数的定义求解,即可得出答案.【题目详解】∵AC=,AB=4,∠C=90°∴∴故答案选择D.【题目点拨】本题考查的是勾股定理和三角函数,比较简单,需要熟练掌握sin函数、cos函数和tan函数分别代表的意思.7、B【分析】根据勾股定理求出AC,求出AC边上的高BM,根据相似三角形的性质得出方程,求出方程的解,即可求得S1,如图2,根据相似三角形的性质列方程求得HJ=,于是得到S2=()2>()2,即可得到结论.【题目详解】解:如图1,设正方形DEFG的边长是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,过B作BM⊥AC于M,交DE于N,由三角形面积公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的边长是;∴S1=()2,如图2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故选:B.【题目点拨】本题考查了相似三角形的性质和判定,三角形面积公式,正方形的性质的应用,熟练掌握相似三角形的判定和性质是解题的关键.8、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【题目详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=BC=1,在Rt△AOB中,OA=,根据三角形的三边关系,OP+AP≥OA,∴当O、P、A三点共线时,AP的长度最小,AP的最小值=OA﹣OP=﹣1.故选:D.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系.确定出AP最小值时点P的位置是解题关键,也是本题的难点.9、B【分析】根据顶点式就可以直接求出结论;【题目详解】解:∵﹣1<0,∴当t=4s时,函数有最大值.即礼炮从升空到引爆需要的时间为4s,故选:B.【题目点拨】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.10、B【分析】根据菱形的性质可知,AO=CO=3,OB=OD,AC⊥BD,再根据勾股定理求出BO的长,从而可以判断出结果.【题目详解】解:如图,由菱形的性质可得,AO=CO=3,BO=DO,AC⊥BD,在Rt△ABO中,BO==DO≠3,∴点A,C在上,点B,D不在上.故选:B.【题目点拨】本题考查菱形的性质、点与圆的位置关系以及勾股定理,掌握基本性质和概念是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据顶点式即可得到顶点坐标.【题目详解】解:∵,∴抛物线的顶点坐标为(2,2),

故答案为(2,2).【题目点拨】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x-h)2+k的顶点坐标为(h,k)是解题的关键.12、【分析】提取公因式a进行分解即可.【题目详解】解:a2−5a=a(a−5).故答案是:a(a−5).【题目点拨】本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.13、1【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【题目详解】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,

∴a=-4,b=-3,

则ab=1.

故答案为:1.【题目点拨】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.14、【分析】根据平行线分线段成比例定理解答即可.【题目详解】解:∵,∴,即,解得:.故答案为:.【题目点拨】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.15、【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【题目详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=1对称的点为:(4,4).故答案为:(4,4).【题目点拨】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.16、,【分析】把方程变形为,把方程左边因式分解得,则有y=0或y-5=0,然后解一元一次方程即可.【题目详解】解:,∴,∴y=0或y-5=0,∴.故答案为:.【题目点拨】此题考查了解一元二次方程-因式分解法,其步骤为:移项,化积,转化和求解这几个步骤.17、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【题目详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【题目点拨】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.18、8π【解题分析】圆锥的侧面积=底面周长×母线长÷1.【题目详解】解:底面半径为1,则底面周长=4π,圆锥的侧面积=×4π×4=8π,

故答案为:8π.【题目点拨】本题利用了圆的周长公式和扇形面积公式求解,解题的关键是了解圆锥的侧面积的计算方法,难度不大.三、解答题(共66分)19、1.【分析】根据OA、OC的长度结合矩形的性质即可得出点B的坐标,由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论.【题目详解】解:∵OA=1,OC=2,四边形OABC是矩形,

∴点B的坐标为(1,2),

∵反比例函数y=的图象过点B,

∴k=1×2=2.

设正方形ADEF的边长为a(a>0),

则点E的坐标为(1+a,a),

∵反比例函数y=的图象过点E,

∴a(1+a)=2,

解得:a=1或a=-3(舍去),

∴正方形ADEF的边长为1.【题目点拨】本题考查了反比例函数图象上点的坐标特征、矩形的性质以及正方形的性质,根据反比例函数图象上点的坐标特征得出关于a的一元二次方程是解题的关键.20、(1)m=4,(1)△ABO的面积为1.【分析】(1)将点P的坐标代入双曲线即可求得m的值;(1)将点P代入直线,先求出直线的解析式,进而得出点A、B的坐标,从而得出△ABO的面积.【题目详解】(1)∵点P(1,m)在双曲线上∴m=解得:m=4(1)∴P(1,4),代入直线得:4=1+b,解得:b=1,故直线解析式为y=x+1A,B两点时直线与坐标轴交点,图形如下:则A(-1,0),B(0,1)∴.【题目点拨】本题考查一次函数与反比例函数的综合,注意提干中告知点P是双曲线与直线的交点,即代表点P即在双曲线上,也在直线上.21、(1);(2);(3)详见解析【分析】(1)根据动点从点出发,沿折线以/的速度向终点运动,得出,即可表达出AE的表达式;(2)由,可得,可得,列出方程即可求解;(3))分当时,当时,当时,三种情况进行画图解答即可.【题目详解】解:(1)当点在边上时,,∴∴.(2)如图:当点落在线段上时,此时:在中,,,∴∴在▱中:,,,,解得.(3)依题意得:在中,,,∴∴当时,此时E在CB边上,此时如图:过D作DM⊥BC于M∴∵∴∴∴∴∴∴当时,E在AB边上,F在BC的下方,此时:如图:过E作EP⊥AC于E,EF交BC于Q,连接CE∴∴∵∴∴∴∴∴在▱中EQ//AC∴∴∴∴∴当时,E在AB边上,F在BC的上方,此时:如图:过E作EP⊥AC于E,∴∴∵∴∴∴∴∴∴综上所述:与之间的函数关系式是:【题目点拨】本题考查了相似三角形的性质、二次函数的应用,掌握三角形的性质是解题的关键.22、(1)证明见解析;(2).【分析】(1)根据平行四边形的定义可知四边形是平行四边形,然后根据角平分线的定义和平行线的性质可得,根据等角对等边即可证出,从而证出四边形是菱形;(2)根据菱形的性质和同角的余角相等即可证出,利用锐角三角函数即可求出AH和AG,从而求出GH.【题目详解】(1)证明:,,四边形是平行四边形,平分,,,,,四边形是菱形;(2)解:,,∵四边形是菱形∴,,,,,四边形是菱形,,,,.【题目点拨】此题考查的是菱形的判定及性质、平行线的性质、角平分线的定义、等腰三角形的性质和解直角三角形,掌握菱形的定义及性质、平行线、角平行线和等腰三角形的关系和用锐角三角函数解直角三角形是解决此题的关键.23、(1),;(2)【分析】(1)先移项,再利用配方法求解即可.(2)合并同类项,再利用配方法求解即可.【题目详解】(1)解得,(2)解得【题目点拨】本题考查了一元二次方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论