2024届云南昆明市盘龙区双龙中学数学九年级第一学期期末达标检测模拟试题含解析_第1页
2024届云南昆明市盘龙区双龙中学数学九年级第一学期期末达标检测模拟试题含解析_第2页
2024届云南昆明市盘龙区双龙中学数学九年级第一学期期末达标检测模拟试题含解析_第3页
2024届云南昆明市盘龙区双龙中学数学九年级第一学期期末达标检测模拟试题含解析_第4页
2024届云南昆明市盘龙区双龙中学数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南昆明市盘龙区双龙中学数学九年级第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x22.下列事件为必然事件的是()A.打开电视机,正在播放新闻 B.任意画一个三角形,其内角和是C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上3.如图,在中,,,,点为上任意一点,连结,以,为邻边作平行四边形,连结,则的最小值为()A. B. C. D.4.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm5.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.1 B.﹣1 C. D.6.如图,在四边形中,,点分别是边上的点,与交于点,,则与的面积之比为()A. B. C.2 D.47.如图所示几何体的左视图是()A. B. C. D.8.如图,已知的三个顶点均在格点上,则的值为()A. B. C. D.9.如图,AB是⊙O的直径,点C,D在直径AB一侧的圆上(异于A,B两点),点E在直径AB另一侧的圆上,若∠E=42°,∠A=60°,则∠B=()A.62° B.70° C.72° D.74°10.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15° B.25° C.30° D.75°二、填空题(每小题3分,共24分)11.一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是__________.12.在Rt△ABC中,∠C=90°,如果cosB=,BC=4,那么AB的长为________.13.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.14.用一根长为31cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm1.15.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=_____.16.如图,以矩形ABCD的顶点A为圆心,线段AD长为半径画弧,交AB边于F点;再以顶点C为圆心,线段CD长为半径画弧,交AB边于点E,若AD=,CD=2,则DE、DF和EF围成的阴影部分面积是_____.17.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为

________.18.若、为关于x的方程(m≠0)的两个实数根,则的值为________.三、解答题(共66分)19.(10分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.20.(6分)关于的一元二次方程有两个实数根,求的取值范围.21.(6分)(1)已知关于x的一元二次方程x2+(a+3)x+a+1=1.求证:无论a取何值,原方程总有两个不相等的实数根:(2)已知:二次函数y=ax2+bx+c(a≠1)中的x和y满足下表:x…﹣11123…y…31﹣11m…①观察上表可求得m的值为;②试求出这个二次函数的解析式.22.(8分)已知:如图,AE∥CF,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AB∥CD;(2)BF=DE.23.(8分)综合与实践:操作与发现:如图,已知A,B两点在直线CD的同一侧,线段AE,BF均是直线CD的垂线段,且BF在AE的右边,AE=2BF,将BF沿直线CD向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线CD相交于点P,点G是AE的中点,连接BG.探索与证明:求证:(1)四边形EFBG是矩形;(2)△ABG∽△PBF.24.(8分)如图,是⊙的直径,弦,垂足为,连接.过上一点作交的延长线于点,连接交于点,且.(1)求证:是⊙的切线;(2)延长交的延长线于点,若,,求的长.25.(10分)如图,正比例函数的图像与反比例函数的图像交于A,B两点.点C在x轴负半轴上,的面积为12.(1)求k的值;(2)根据图像,当时,写出x的取值范围;(3)连接BC,求的面积.26.(10分)某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.

参考答案一、选择题(每小题3分,共30分)1、B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【题目详解】A.当a=0时,y=ax2+bx+c=bx+c,不是二次函数,故不符合题意;B.y=x(x﹣1)=x2-x,是二次函数,故符合题意;C.的自变量在分母中,不是二次函数,故不符合题意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【题目点拨】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.2、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【题目详解】∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是,是必然事件,符合题意.故选B.【题目点拨】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、A【分析】设PQ与AC交于点O,作⊥于,首先求出,当P与重合时,PQ的值最小,PQ的最小值=2.【题目详解】设与AC交于点O,作⊥于,如图所示:

在Rt△ABC中,∠BAC=90,∠ACB=45,

∴,∵四边形PAQC是平行四边形,

∴,∵⊥,∠ACB=45,∴,当与重合时,OP的值最小,则PQ的值最小,

∴PQ的最小值故选:A.【题目点拨】本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键.4、B【题目详解】由题意可知,在直角三角形中,30°角所对的直角边等于斜边的一半,所以斜边=2×2=4cm.考点:含30°的直角三角形的性质.5、B【分析】根据关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根可知△=0,求出a的取值即可.【题目详解】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1.故选B.【题目点拨】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.6、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性质即可得出△AOE与△BOF的面积之比.【题目详解】:∵AD∥BC,

∴∠OAE=∠OFB,∠OEA=∠OBF,

∴,∴所以相似比为,∴.故选:D.【题目点拨】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.7、B【分析】根据从左面看得到的图形是左视图,可得答案.【题目详解】解:如图所示,几何体的左视图是:.故选:B.【题目点拨】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.8、D【分析】过B点作BD⊥AC于D,求得AB、AC的长,利用面积法求得BD的长,利用勾股定理求得AD的长,利用锐角三角函数即可求得结果.【题目详解】过B点作BD⊥AC于D,如图,

由勾股定理得,,,∵,即,在中,,,,,∴.故选:D.【题目点拨】本题考查了解直角三角形以及勾股定理的运用,面积法求高的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.9、C【分析】连接AC.根据圆周角定理求出∠CAB即可解决问题.【题目详解】解:连接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直径,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故选:C.【题目点拨】本题主要考察圆周角定理,解题关键是连接AC.利用圆周角定理求出∠CAB.10、C【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【题目详解】∵∠A=45°,∠AMD=75°,∴∠C=∠AMD-∠A=75°-45°=30°,∴∠B=∠C=30°,故选C.二、填空题(每小题3分,共24分)11、【解题分析】试题分析:骰子共有六个面,每个面朝上的机会是相等的,而奇数有1,3,5;根据概率公式即可计算.试题解析:∵骰子六个面中奇数为1,3,5,∴P(向上一面为奇数)=.考点:概率公式.12、6【分析】根据题意cosB=,得到AB=,代入计算即可.【题目详解】解:Rt△ABC中,∠C=90°,cosB=,可知cosB=得到AB=,又知BC=4,代入得到AB=故填6.【题目点拨】本题考查解直角三角形相关,根据锐角三角函数进行分析求解.13、8﹣π【解题分析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋转的性质结合已知条件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案为:.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.14、2.【解题分析】试题解析:设矩形的一边长是xcm,则邻边的长是(16-x)cm.则矩形的面积S=x(16-x),即S=-x1+16x,当x=-时,S有最大值是:2.考点:二次函数的最值.15、36°.【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出==,由圆周角定理即可得出答案.【题目详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=(n﹣2)×180°=(5﹣2)×180°=108°,BC=CD=DE,∴==,∴∠CAD=×108°=36°;故答案为:36°.【题目点拨】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.16、2π+2﹣4【分析】如图,连接EC.首先证明△BEC是等腰直角三角形,根据S阴=S矩形ABCD-(S矩形ABCD-S扇形ADF)-(S矩形ABCD-S扇形CDE-S△EBC)=S扇形ADF+S扇形CDE+S△EBC-S矩形ABCD计算即可.【题目详解】如图,连接EC.∵四边形ABCD是矩形,∴AD=BC=2,CD=AB=EC=2,∠B=∠A=∠DCB=90°,∴BE===2,∴BC=BE=2,∴∠BEC=∠BCE=45°,∴∠ECD=45°,∴S阴=S矩形ABCD﹣(S矩形ABCD﹣S扇形ADF)﹣(S矩形ABCD﹣S扇形CDE﹣S△EBC)=S扇形ADF+S扇形CDE+S△EBC﹣S矩形ABCD=+×2×2﹣2×2,=2π+2﹣4.故答案为:2π+2﹣4.【题目点拨】本题考查扇形的面积公式,矩形的性质等知识,解题的关键是熟练掌握基本知识,学会用分割法求阴影部分面积.17、​【分析】采用列举法求概率.【题目详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P(抽取的2名学生是甲和乙)=1÷6=.故答案为:【题目点拨】本题考查概率的计算,题目比较简单.18、-2【分析】根据根与系数的关系,,代入化简后的式子计算即可.【题目详解】∵,,∴,故答案为:【题目点拨】本题主要考查一元二次方程ax2+bx+c=0的根与系数关系,熟记:两根之和是,两根之积是,是解题的关键.三、解答题(共66分)19、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S△PAB=S△BPO+S△APO-S△AOB,设P求出关于n的函数式,从而求S△PAB的最大值.(3)求点D的坐标,设D,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点,使?根据以上条件和结论可知∠CAD=120°,是∠CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出这样的点,就存在Q点.【题目详解】解:抛物线顶点为可设抛物线解析式为将代入得抛物线,即连接,设点坐标为当时,最大值为存在,设点D的坐标为过作对称轴的垂线,垂足为,则在中有化简得(舍去),∴点D(,-3)连接,在中在以为圆心,为半径的圆与轴的交点上此时设点为(0,m),AQ为的半径则AQ²=OQ²+OA²,6²=m²+3²即∴综上所述,点坐标为故存在点Q,且这样的点有两个点.【题目点拨】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.20、.【分析】根据判别式即可求出的取值范围.【题目详解】∵,,,方程有两个实数根,∴,∴,∴.【题目点拨】本题主要考查了根的判别式的应用,解题的关键是熟记根的判别式.21、(2)证明见解析;(2)①3;②y=(x﹣2)2﹣2.【分析】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,即可求解;(2)①函数的对称轴为:x=2,根据函数的对称轴知,m=3,即可求解;②函数的顶点坐标为(2,﹣2),故抛物线的表达式为:y=a(x﹣2)2﹣2,将(2,2)代入上式并解得:a=2,即可求解.【题目详解】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,故无论a取何值,原方程总有两个不相等的实数根;(2)①函数的对称轴为:x=2,根据函数的对称性可得,m=3,故答案为:3;②函数的顶点坐标为(2,﹣2),故抛物线的表达式为:y=a(x﹣2)2﹣2,将(2,2)代入上式得:2=a(2﹣2)2﹣2,解得:a=2,故抛物线的表达式为:y=(x﹣2)2﹣2.【题目点拨】此题考查一元二次方程根的判别式,二次函数的性质,待定系数法求函数的解析式,此题中能读懂表格中的数值变化是解题的关键.22、(1)见解析;(2)见解析.【解题分析】(1)由△ABE≌△CDF可得∠B=∠D,就可得到AB∥CD;(2)要证BF=DE,只需证到△ABE≌△CDF即可.【题目详解】解:(1)∵AB∥CD,∴∠B=∠D.在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴∠B=∠D,∴AB∥CD;(2)∵△ABE≌△CDF,∴BE=DF.∴BE+EF=DF+EF,∴BF=DE.【题目点拨】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.23、(1)见解析;(2)见解析.【分析】(1)先通过等量代换得出GE=BF,然后由AE⊥CD,BF⊥CD得出AE∥BF,从而得到四边形EFBG是平行四边形,最后利用BF⊥CD,则可证明平行四边形EFBG是矩形;(2)先通过矩形的性质得出∠AGB=∠GBF=∠BFE=90°,然后通过等量代换得出∠ABG=∠PBF,再加上∠AGB=∠PFB=90°即可证明△ABG∽△PBF.【题目详解】(1)证明:∵AE⊥CD,BF⊥CD,∴AE∥BF,∵AE=2BF,∴BF=AE,∵点G是AE的中点,∴GE=AE,∴GE=BF,又AE∥BF,∴四边形EFBG是平行四边形,∵BF⊥CD,∴平行四边形EFBG是矩形;(2)∵四边形EFBG是矩形,∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论