




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省大连金普新区五校联考九年级数学第一学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,数轴上的点,,,表示的数分别为,,,,从,,,四点中任意取两点,所取两点之间的距离为的概率是()A. B. C. D.2.如图,在△ABC中,D、E分别是BC、AC上的点,且DE∥AB,若S△CDE:S△BDE=1:3,则S△CDE:S△ABE=()A.1:9 B.1:12C.1:16 D.1:203.如图,一个透明的玻璃正方体表面嵌有一根黑色的铁丝.这根铁丝在正方体俯视图中的形状是()A. B. C. D.4.下列正多边形中,绕其中心旋转72°后,能和自身重合的是()A.正方形 B.正五边形C.正六边形 D.正八边形5.在半径为的圆中,挖出一个半径为的圆面,剩下的圆环的面积为,则与的函数关系式为()A. B. C. D.6.如图,在中,,,,以点为圆心,的长为半径作弧,交于点,则阴影部分的面积是()A. B. C. D.7.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形AECF的面积为()A.1 B.2 C.2 D.48.关于x的一元二次方程x2﹣mx+(m﹣2)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.如图所示的图案是由下列哪个图形旋转得到的()A. B. C. D.10.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切 B.相交 C.相离 D.相切或相交11.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234 B.4312 C.3421 D.423112.下列说法正确的是()A.“概率为1.1111的事件”是不可能事件B.任意掷一枚质地均匀的硬币11次,正面向上的一定是5次C.“任意画出一个等边三角形,它是轴对称图形”是随机事件D.“任意画出一个平行四边行,它是中心对称图形”是必然事件二、填空题(每题4分,共24分)13.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.14.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.15.如图所示的网格是正方形网格,△和△的顶点都是网格线交点,那么∠∠_________°.16.一元二次方程的解是__.17.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.18.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m.测得斜坡的斜面坡度为i=1:(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.三、解答题(共78分)19.(8分)如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)20.(8分)在边长为1的小正方形网格中,的顶点均在格点上,将绕点逆时针旋转,得到,请画出.21.(8分)如图,在△ABC中,sinB=,cosC=,AB=5,求△ABC的面积.22.(10分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.(1)设x天后每千克苹果的价格为p元,写出p与x的函数关系式;(2)若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;(3)该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?23.(10分)如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:).(1)直接写出上下两个长方休的长、宽、商分别是多少:(2)求这个立体图形的体积.24.(10分)如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是.25.(12分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.26.2020年元且,某商场为促销举办抽奖活动.规则如下:在一个不透明的纸盒里,装有2个红球和2个黑球,这些球除颜色外都相同.顾客每次摸出1个球,若摸到红球,则获得一份奖品;若摸到黑球,则没有奖品.(1)如果张大妈只有一次摸球机会,那么张大妈获得奖品的概率是.(2)如果张大妈有两次摸球机会(摸出后不放回),请用“树状图”或“列表”的方法,求张大妈获得两份奖品的概率.
参考答案一、选择题(每题4分,共48分)1、D【分析】利用树状图求出可能结果即可解答.【题目详解】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所取两点之间的距离为2的概率==.故选D.【题目点拨】本题考查画树状图或列表法求概率,掌握画树状图的方法是解题关键.2、B【分析】由S△CDE:S△BDE=1:3得CD:BD=1:3,进而得到CD:BC=1:4,然后根据DE∥AB可得△CDE∽△CAB,利用相似三角形的性质得到,然后根据面积和差可求得答案.【题目详解】解:过点H作EH⊥BC交BC于点H,∵S△CDE:S△BDE=1:3,∴CD:BD=1:3,∴CD:BC=1:4,∵DE∥AB,∴△CDE∽△CBA,∴,∵S△ABC=S△CDE+S△BDE+S△ABE,∴S△CDE:S△ABE=1:12,故选:B.【题目点拨】本题综合考查相似三角形的判定与性质,三角形的面积等知识,解题关键是掌握相似三角形的判定与性质.3、A【解题分析】从上面看得到的图形是A表示的图形,故选A.4、B【解题分析】选项A,正方形的最小旋转角度为90°,绕其中心旋转90°后,能和自身重合;选项B,正五边形的最小旋转角度为72°,绕其中心旋转72°后,能和自身重合;选项C,正六边形的最小旋转角度为60°,绕其中心旋转60°后,能和自身重合;选项D,正八边形的最小旋转角度为45°,绕其中心旋转45°后,能和自身重合.故选B.5、D【分析】根据圆环的面积=大圆的面积-小圆的面积,即可得出结论.【题目详解】解:根据题意:y=故选D.【题目点拨】此题考查的是圆环的面积公式,掌握圆环的面积=大圆的面积-小圆的面积是解决此题的关键.6、A【分析】根据直角三角形的性质得到AC=BC=2,∠B=60°,根据扇形和三角形的面积公式即可得到结论.【题目详解】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AC=BC=2,∠B=60°,∴阴影部分的面积=S△ACB-S扇形BCD=×2×2-=故选:A.【题目点拨】本题考查了扇形面积的计算,含30°角的直角三角形的性质,正确的识别图形是解题的关键.7、C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【题目详解】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AEBC=2.故选C.【题目点拨】本题考查折叠问题以及勾股定理.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8、A【解题分析】试题解析:△=b2-4ac=m2-4(m-2)=m2-4m+8=(m-2)2+4>0,所以方程有两个不相等的实数根.故选:A.点睛:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9、D【解题分析】由一个基本图案可以通过旋转等方法变换出一些复合图案.【题目详解】由图可得,如图所示的图案是由绕着一端旋转3次,每次旋转90°得到的,
故选:D.【题目点拨】此题考查旋转变换,解题关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.10、D【分析】根据直线和圆的位置关系来判断.【题目详解】设圆心到直线l的距离为d,则d≤10,当d=10时,d=r,直线与圆相切;当r<10时,d<r,直线与圆相交,所以直线与圆相切或相交.故选D点睛:本题考查了直线与圆的位置关系,①直线和圆相离时,d>r;②直线和圆相交时,d<r;③直线和圆相切时,d=r(d为圆心到直线的距离),反之也成立.11、B【解题分析】由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.【题目详解】解:时间由早到晚的顺序为1.
故选B.【题目点拨】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.12、D【分析】根据不可能事件、随机事件、以及必然事件的定义(即根据事件发生的可能性大小)逐项判断即可.【题目详解】在一定条件下,不可能发生的事件叫不可能事件;一定会发生的事件叫必然事件;可能发生也可能不发生的事件叫随机事件A、“概率为的事件”是随机事件,此项错误B、任意掷一枚质地均匀的硬币11次,正面向上的不一定是5次,此项错误C、“任意画出一个等边三角形,它是轴对称图形”是必然事件,此项错误D、“任意画出一个平行四边行,它是中心对称图形”是必然事件,此项正确故选:D.【题目点拨】本题考查了不可能事件、随机事件、以及必然事件的定义,掌握理解相关定义是解题关键.二、填空题(每题4分,共24分)13、.【解题分析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【题目详解】解:如图,过点作于点,过点作于点,∵,,∴,∵在中,,∴,在与中,∵,∴,∴,∵,∵,∴,∴∽,∴,∴,∴,,∴,在中,,在中,,∴,,在中,,在中,,∵,∴∽,∴,故答案为:.【题目点拨】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.14、20【解题分析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【题目详解】设黄球的个数为x个,∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,∴=60%,解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.【题目点拨】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.15、45【分析】先利用平行线的性质得出,然后通过勾股定理的逆定理得出为等腰直角三角形,从而可得出答案.【题目详解】如图,连接AD,∵∴∴∵∴∴∴故答案为45【题目点拨】本题主要考查平行线的性质及勾股定理的逆定理,掌握勾股定理的逆定理及平行线的性质是解题的关键.16、x1=1,x2=﹣1.【分析】先移项,在两边开方即可得出答案.【题目详解】∵∴=9,∴x=±1,即x1=1,x2=﹣1,故答案为x1=1,x2=﹣1.【题目点拨】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.17、【解题分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【题目详解】解:,底面周长,将圆锥侧面沿剪开展平得一扇形,此扇形的半径,弧长等于圆锥底面圆的周长设扇形圆心角度数为,则根据弧长公式得:,,即展开图是一个半圆,点是展开图弧的中点,,连接,则就是蚂蚁爬行的最短距离,在中由勾股定理得,,,即蚂蚁爬行的最短距离是.故答案为:.【题目点拨】考查了平面展开最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.18、4米.【分析】首先根据斜面坡度为i=1:求出株距(相邻两树间的水平距离)为6m时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【题目详解】由题意水平距离为6米,铅垂高度2米,∴斜坡上相邻两树间的坡面距离=(m),故答案为:4米.【题目点拨】此题考查解直角三角形的应用,解题关键是掌握计算法则.三、解答题(共78分)19、(1)见详解;(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.理由见详解【分析】(1)根据三角形的中位线定理可证得DE∥GF,DE=GF,即可证得结论;(2)根据三角形的中位线定理结合菱形的判定方法分析即可.【题目详解】(1)∵D、E分别是边AB、AC的中点.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四边形DEFG是平行四边形;(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.连接AO,由(1)得四边形DEFG是平行四边形,∵点D,G,F分别是AB,OB,OC的中点,∴,,当AO=BC时,GF=DF,∴四边形DGFE是菱形.【题目点拨】本题主要考查三角形的中位线定理,平行四边形、菱形的判定,平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20、见解析【分析】根据题意(将绕点逆时针旋转即可画出图形;【题目详解】解:如图所示,即为所求.【题目点拨】此题考查了旋转变换.注意抓住旋转中心与旋转方向是关键.21、【分析】过A作AD⊥BC,根据三角函数和三角形面积公式解答即可.【题目详解】过A作AD⊥BC.在△ABD中,∵sinB=,AB=5,∴AD=3,BD=1.在△ADC中,∵cosC=,∴∠C=15°,∴DC=AD=3,∴△ABC的面积=.【题目点拨】本题考查了解直角三角形,关键是根据三角函数和三角形面积公式解答.22、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【分析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【题目详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【题目点拨】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.23、(1)立体图形下面的长方体的长、宽、高分别为;上面的长方体的长、宽、高分别为;(2)这个立体图形的体积为.【分析】(1)根据主视图可分别得出两个长方体的长和高,根据左视图可分别得出两个长方体的宽和高,由此可得两个长方体的长、宽、高;(2)分别利用长方体的体积计算公式求得两个长方体的体积,再求和即可.【题目详解】解:(1)根据视图可知,立体图形下面的长方体的长、宽、高分别为,上面的长方体的长、宽、高分别为(2)这个立体图形的体积=,=,答:这个立体图形的体积为.【题目点拨】本题考查已知几何体的三视图求体积.熟记主视图反应几何体的长和高,左视图反应几何体的宽和高,俯视图反应几何体的长和宽是解决此题的关键.24、(1)见解析;(2)1.【分析】(1)连接OC,由切线的性质可得OC⊥MN,即可证得OC∥BD,由平行线的性质和等腰三角形的性质可得∠CBD=∠BCO=∠ABC,即可证得结论;(2)连接AC,由勾股定理求得BD,然后通过证得△ABC∽△CBD,求得直径AB,从而求得半径.【题目详解】(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO=∠ABC,∴∠CBD=∠ABC.;(2)解:连接AC,在Rt△BCD中,BC=4,CD=4,∴B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技巨头如何布局电动汽车电池市场
- 塔吊专业合同范本
- 电子竞技产业未来投资趋势与商业机会探索
- 休养所志愿服务考核试卷
- 动物胶在化妆品领域的应用考核试卷
- 地下综合管廊工程生态补偿措施考核试卷
- 摩托车维修服务质量管理考核试卷
- 服装零售企业品牌形象与公关管理考核试卷
- 转让几成股份合同范本
- 心理健康压力应对考核试卷
- 新闻采访与写作课件第十九章融合报道
- 常用小学生词语成语积累归类大全
- 七种不同样式的标书密封条
- 全国水利工程监理工程师培训教材质量控制
- 中国传统成语故事(英文版)
- 铸造厂总降压变电所及厂区配电系统设计
- 航拍中国优秀课件
- 《做自己的心理医生 现代人的心理困惑和自我疗愈策略》读书笔记思维导图PPT模板下载
- 小学音乐组集体备课计划
- 稿件修改说明(模板)
- 血液透析安全注射临床实践专家共识解读
评论
0/150
提交评论