版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省资阳市太平中学2022年高二数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在(x2+3x+2)5的展开式中x的系数为()A.160 B.240 C.360 D.800参考答案:B【考点】二项式定理的应用.【分析】利用分步乘法原理:展开式中的项是由5个多项式各出一个乘起来的积,展开式中x的系数是5个多项式仅一个多项式出3x,其它4个都出2组成.【解答】解:(x2+3x+2)5展开式的含x的项是由5个多项式在按多项式乘法展开时仅一个多项式出3x,其它4个都出2∴展开式中x的系数为C51?3?24=240故选项为B2.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是(
)A.
有99%以上的把握认为“爱好该项运动与性别有关”B.
有99%以上的把握认为“爱好该项运动与性别无关”C.
在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.
在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”参考答案:A由,而,故由独立性检验的意义可知选A.3.若三个棱长均为整数(单位:cm)的正方体的表面积之和为564cm2,则这三个正方体的体积之和为
()A.764cm3或586cm3
B.764cm3
C.586cm3或564cm3
D.586cm3参考答案:A4.抛物线过点(2,-2),则抛物线的准线为()A.
B.
C.
D.参考答案:B因为抛物线过点,所以抛物线的准线为,选B.5.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是(
)
A
B
C
D参考答案:B6.从甲袋内摸出1个红球的概率是,从乙袋内摸出1个红球的概率是,从两袋内各摸出1个球,则等于(
)A.2个球不都是红球的概率 B.2个球都是红球的概率C.至少有1个红球的概率 D.2个球中恰好有1个红球的概率参考答案:C分析:根据题意,易得从甲袋中摸出的球不是红球与从乙袋中摸出的球不是红球的概率,进而以此分析选项:对于A,2个球都不是红球,即从甲袋中摸出的球不是红球与从乙袋中摸出的球不是红球同时发生,由相互独立事件的概率公式可得其概率,对于B,2个球都是红球,即从甲袋中摸出的球是红球与从乙袋中摸出的球是红球同时发生,由相互独立事件的概率公式可得其概率,对于C、至少有1个红球与两球都不是红球为对立事件,由对立事件的概率性质可得其概率,对于D,从甲、乙两袋中摸球有三种情况,即2个球都不是红球,2个球都是红球,2个球中恰有1个红球,由互斥事件的概率性质,可得2个球中恰有1个红球的概率,将求得的概率与比较,即可得答案.解答:解:根据题意,从甲袋中摸出1个红球的概率为,则摸出的球不是红球的概率为1-=,从乙袋中摸出1个红球的概率为,则摸出的球不是红球的概率为1-=,依次分析选项,对于A、2个球都不是红球,即从甲袋中摸出的球不是红球与从乙袋中摸出的球不是红球同时发生,则其概率为×=,不合题意;对于B、2个球都是红球,即从甲袋中摸出的球是红球与从乙袋中摸出的球是红球同时发生,则其概率为×=,不合题意;对于C、至少有1个红球与两球都不是红球为对立事件,则其概率为1-=,符合题意;对于D、由A可得,2个球都不是红球的概率为,由B可得2个球都是红球的概率为,则2个球中恰有1个红球的概率为1--=,不合题意;故选C.7.定义在R上的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,f(x)的最小值是()A.-
B.-
C.
D.-1参考答案:A8.设α,β,γ为平面,a,b为直线,给出下列条件:①a?α,b?β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能使α∥β一定成立的条件是()A.①②B.②③C.②④D.③④参考答案:C略9.x为实数,[x]表示不超过x的最大整数(如[-1.5]=-2,[0]=0,[2.3]=2),则关于函数f(x)=x-[x],x∈R的说法不正确的是A.函数不具有奇偶性B.x∈[1,2)时函数是增函数C.函数是周期函数D.若函数g(x)=f(x)-kx恰有两个零点,则k∈(-∞,-1)∪参考答案:D画出函数f(x)=x-[x]的图像如图,据图可知选D.10.三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为()A.16π B.32π C.48π D.64π参考答案:B【考点】球内接多面体.【分析】由题意把A、B、C、P扩展为三棱柱如图,求出上下底面中心连线的中点与A的距离为球的半径,然后求出球的体积.【解答】解:由题意画出几何体的图形如图,把A、B、C、P扩展为三棱柱,上下底面中心连线的中点与A的距离为球的半径,PA=2AB=6,OE=3,△ABC是正三角形,∴AB=3,∴AE==.AO==2.所求球的体积为:(2)3=32π.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.已知圆,圆心为,点,为圆上任意一点,的垂直平分线交于点,则点的轨迹方程为____________.参考答案:略12.在空间直角坐标系O-xyz中,轴上有一点到已知点和点的距离相等,则点的坐标是
.参考答案:20.化简
参考答案:略14.(2x-4)dx=________.参考答案:略15.在等差数列中,
.参考答案:7216.将全体正整数排成一个三角形的数阵:
按照以上排列的规律,第n行(n≥2)从左向右的第3个数为________.
参考答案:n2﹣2n+4
【解答】解:前n﹣1行共有正整数1+3+5+…+(2n﹣3)==(n﹣1)2个,
因此第n行第3个数是(n﹣1)2+3=n2﹣2n+4个.
故答案为:n2﹣2n+4
【考点】归纳推理
【分析】先找到数的分布规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行从左向右的第3个数.
17.某班有52有,男女各半,男女各自平均分成两组,从这个班中选出4人参加某项活动,这4人恰好来自不同的组别的概率是__________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.(1)求证:平面EFG⊥平面PDC;(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.参考答案:(1)证明:由已知MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC?平面ABCD,所以PD⊥BC.]因为四边形ABCD为正方形,所以BC⊥DC.
又PD∩DC=D,因此BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC.
因此GF⊥平面PDC.又GF?平面EFG,所以平面EFG⊥平面PDC.……………6分(2)因为PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,则PD=AD=2,所以VP-ABCD=S正方形ABCD·PD=.由于DA⊥平面MAB,且PD∥MA,所以DA即为点P到平面MAB的距离,VP-MAB=S△MAB·DA=××1×2×2=.所以VP-MAB∶VP-ABCD=1∶4.…12分19.(本题满分9分)已知点在矩形的边上,,点在边上且,垂足为,将沿边折起,使点位于位置,连接得四棱锥.(1)求证:;(2)若且平面平面,求四棱锥的体积.参考答案:(1)由题意知,,.又因为,(2)平面平面,平面平面.又有面积法知且20.(本小题10分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC-ccosA.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.参考答案:而a2=b2+c2-2bccosA,故b2+c2=8.解得b=c=2.21.(本题满分12分)等差数列中,.(1)求数列的通项公式;(2)设,求数列的前项和.参考答案:(1)…………6分(2)………….12分22.写出命题“若x2+x﹣2≤0,则|2x+1|<1”的逆命题、否命题、逆否命题,并分别判断它们的真假.参考答案:【考点】命题的真假判断与应用.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四管管理制度
- 抢救与急救措施管理制度
- 利用导数解决不等式的恒成立问题
- 人教部编版四年级语文上册口语交际《讲历史人物故事》精美课件
- 【同步提优】部编版三语下第二单元各类阅读真题(含小古文、非连续性文本等)名师解析连载
- 福建省福州市三校联考2024年高三练习题五(全国卷)数学试题
- 2024年湖南客运资格证培训考试题答案解析
- 2024年河南客运考试应用能力试题答案解析
- 2024年重庆客运旅客急救考试答案
- 2024年河源小型客运从业资格证考试培训试题和答案
- 服装厂的账务处理实例-记账实操
- 译林版(2024新版)七年级上册英语期中考试作文练习题(含答案范文)
- 《应用统计学》(第4版)-自测试卷及答案B卷
- 《赋能年轻一代、共筑韧性未来》国际减灾日主题班会教案
- 10.1爱护身体(课件)-2024-2025学年统编版道德与法治七年级上册
- 2024口腔执业医师聘用合同
- 2024-2025学年人教版生物七年级上册期中备考重点知识
- 低空经济招商引资策略与措施
- 第10课《我们不乱扔》(课件)-部编版道德与法治二年级上册
- 阳光心理-健康人生小学生心理健康主题班会课件
- 中图版七年级下册信息技术 4.1策划数字故事 教学设计
评论
0/150
提交评论