关键矿产展望比较分析 Critical Minerals Outlooks Comparison_第1页
关键矿产展望比较分析 Critical Minerals Outlooks Comparison_第2页
关键矿产展望比较分析 Critical Minerals Outlooks Comparison_第3页
关键矿产展望比较分析 Critical Minerals Outlooks Comparison_第4页
关键矿产展望比较分析 Critical Minerals Outlooks Comparison_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

F

CriticalMinerals

OutlooksComparison

AReportbytheInternationalEnergyForumandThePayneInstituteofPublicPolicyattheColoradoSchoolofMines

August2023

AreportbytheInternationalEnergyForumandThePayneInstituteofPublicPolicyattheColoradoSchoolofMines

August2023

Writtenandproducedby:

JulietAkamboe

EbenezerManful-Sam

FelixAyaburi

MasonHamilton

MorganBazilian

jsakamboe@

manfulsam@

fzayaburi@

mason.hamilton@

mbazilian@

AbouttheInternationalEnergyForum

TheInternationalEnergyForum(IEF)istheworld'slargestinternationalorganizationofenergyministersfrom71countriesandincludesbothproducingandconsumingnations.TheIEFhasabroadmandatetoexamineallenergyissuesincludingoilandgas,cleanandrenewableenergy,sustainability,energytransitionsandnewtechnologies,datatransparency,andenergyaccess.ThroughtheForumanditsassociatedevents,officials,industryexecutives,andotherexpertsengageinadialogueofincreasingimportancetoglobalenergysecurityandsustainability.

AboutThePayneInstitute

ThemissionofthePayneInstituteatColoradoSchoolofMinesistoprovideworld-classscientificinsights,helpingtoinformandshapepublicpolicyonearthresources,energy,andenvironment.TheInstitutewasestablishedwithanendowmentfromJimandArlenePayne,andseekstolinkthestrongscientificandengineeringresearchandexpertiseatMineswithissuesrelatedtopublicpolicyandnationalsecurity.ThePayneInstituteextendstopublicpolicyMines’convictionthatenergyandtheenvironmentmust–andcan–fruitfullycoexist.

TableofContents

Introduction

3

KeyFindings

5

Aluminum

5

Cobalt

7

Copper

9

Graphite

11

Lithium

13

Neodymium

15

Nickel

16

Silver

18

EnergyScenarios

20

ClimateOutcomeDriven

20

SharedEconomicPathways

20

SpeedofTransitionandTechnologicalProgress

20

Technologymixes

20

Othertechnologieswithinfluence

21

ResourceRequirements

21

TopDownvs.BottomUp

23

IntensityandResourceEfficiencyAssumptions

23

Sub-TechnologiesandChemistryShifts

23

Recycling

25

Conclusions

25

References

27

Appendix:BackgroundsofSurveyedReports

28

_____________________________________________________________________________

2

Introduction

Historically,theenergysectorconstitutedonlyaminorpartofcriticalmineralssupplychainsandmarkets.However,withtheaccelerationofenergytransitions,cleanenergytechnologieshaverapidlyemergedasthesegmentwiththefastestgrowthindemand.

Thishascapturedpublicattentionglobally,andcreatedvarioustrade,market,andgeopoliticalissues.Asaresult,numerousanalyticalscenarioshavebeenproducedtobetterunderstandthisrapidlychangingandcomplexlandscape.

Inafuturetrajectoryalignedwithclimategoals,theproportionoftotalmineralsdemandaccountedforbycleanenergytechnologieswillrisesignificantlyovertheforthcomingtwodecades.Electricvehicles(EVs)andbatterystoragetechnologieshavealreadysupersededconsumerelectronicstobecomethelargestconsumersoflithium,andtheyareprojectedtosurpassstainlesssteeltobecometheprimaryendusersofnickelby2040,andbatteryanodesshareofgraphitedemandhasincreased250%since2018.

Asaresult,severalquantitativedemandmodelshavebeendevelopedtohelpunderstandthescaleofgrowth,andwhethermaterialshortageswillbecomeanobstacletothedeploymentofcleanenergytechnologies.

Thisreportisanon-comprehensivemeta-analysisof11publiclyavailablereportswhichincludevariousassumptionsforenergyandtechnologyscenarios,andtheirresultingcriticalmineralrequirements.Thisexerciseismeanttohighlightkeyinsightsforcriticalmineralsdecisionmakers.Thereportsarefromeightagenciesandorganizationsacrossdifferentgeographies,spanningfrom2019to2023.

.InternationalRenewableEnergyAgency(IRENA)

oWorldEnergyTransitionsOutlook,2023

oGeopoliticsoftheEnergyTransition,2023

oCriticalMineralsfortheEnergyTransition,2021

.InternationalEnergyAgency(IEA)

oTheRoleofCriticalMineralsinCleanEnergyTransitions,2022

oCriticalMineralsMarketReview,2023

.WorldBank

oMineralsforClimateAction,2020

.InstituteforSustainableFuture(ISF)

oTheRoleofCriticalMineralsinCleanEnergyTransitions,2019

.McKinsey&Company

oTheFutureofCriticalMineralsintheNet-ZeroTransition,2021

.CatholicUniversityofLuven(KULuven)

oMetalsforCleanEnergy:PathwaystoSolvingEurope’sRawMaterialsChallenge,2022

.EnergyTransitionsCommission(ETC)

oMineralandResourceRequirementsfortheEnergyTransition,2023

.GermanMineralResourcesAgency(DERA)

oRawMaterialsforEmergingTechnologies,2021

_____________________________________________________________________________

3

All11reportsconsideredconcurontheincreasingdemandformineralsandtheircentralroleintheenergytransition.However,acrossthe11reports,28differentmineralsandmetalsarementioned,withsufficientdatatocompareonlyeight:aluminum,cobalt,copper,graphite,lithium,neodymium,nickel,andsilver.

Thesedemandprojectionsareinherentlysubjecttolargevariations.Disparitiesintheirspecificmineraldemandprojectionsreflectthedifferenttypesofenergyscenarioschosen,themixoftechnologiesdeployed,assumptionsonresourceintensity,technologydevelopments,andrecyclingrates.

Whileoutsidethescopeofthisreport,thesupplysidealsopresentsconsiderablechallengestolong-termforecaststhatmeritadditionalstudyanddiscussion.Manyofthereportssurveyedhighlightedtheriskstotheirprojectionsfromsupplysiderisks,butonlyafewincorporatedsupplyforecastsalongsidetheirdemandprojections.Allreportssurveyednotedtheimportanceofresponsiblesourcing,supplychaintransparency,recycling,andimprovedminingandprocessingefficiency.

Understandingthepotentialmineraldemandsassociatedwiththecleanenergytransitioniscrucialforpolicymakers,mineralproducers,renewableenergydevelopers,andcivilsocietyorganizationstounlockinvestment,setachievableclimatepolicies,andgainpublicacceptanceofnewmines.

_____________________________________________________________________________

4

KeyFindings

Aluminum

_____________________________________________________________________________

5

_____________________________________________________________________________

6

Cobalt

_____________________________________________________________________________

7

Copper

_____________________________________________________________________________

9

_____________________________________________________________________________

10

Graphite

_____________________________________________________________________________

11

_____________________________________________________________________________

12

Lithium

_____________________________________________________________________________

13

_____________________________________________________________________________

14

Neodymium

Note:ProductiondataofNeodymiuminU.S.GeologicalSurveydataiscategorizedwithother“RareEarthElements”andnotpublishedindividually.

_____________________________________________________________________________

15

Nickel

_____________________________________________________________________________

16

_____________________________________________________________________________

17

Silver

_____________________________________________________________________________

18

_____________________________________________________________________________

19

EnergyScenarios

Thevariousreportshavedifferentenergyandtechnologyscenariostocalculatecriticalmineralrequirementsunderarangeofconditions.

ClimateOutcomeDriven

Multiplescenarioswerecreatedwithaspecificclimate-basedoutcomebyacertaindateasthegoal,andthenmodelstheenergysystemrequiredtoachievethatgoal.

Inthiscollectionofreports,climateoutcomedrivenscenariosrangedfromlimitingglobalaveragetemperatureriseto1.5°Cby2050,alignedwiththeIPCCspecialreport,to1.7°C,orto2°Cincrease.

CommonlyusedscenarioswerederivedfromInternationalEnergyAgencyscenarios,suchastheAnnouncedPoliciesScenario(APS),associatedwitha1.7°Ctemperatureriseby2100,andtheNet-ZeroEnergyScenario(NZE),associatedwitha1.5°Ctemperaturerise.

Additionally,severalreportsusedIEAscenariosdevelopedpriortotheuseofAPSandNZE,suchastheStatedPoliciesScenario(SPS),andtheSustainableDevelopmentScenario(SDS).TheSTEPSscenarioembodiesthepresentpolicylandscape,basedonasector-wiseappraisalofspecificpoliciesinplaceandthoseannouncedbygovernmentsglobally.Incontrast,theSDSscenarioenvisionsapathwaythatfullyrealizesglobalgoalstocombatclimatechangeinaccordancewiththeParisAgreement,ensuresuniversalenergyaccess,andsignificantlycurbsairpollution.Thisscenariopresupposesthefulfilmentofallexistingnet-zeropledges,withconcertedeffortstoachievenear-termemissionsreductions;advancedeconomiesareprojectedtoreachnet-zeroemissionsby2050,Chinaby2060,andallothernationsby2070atthelatest.

SharedEconomicPathways

TheSharedSocioeconomicPathways(SSPs),werecreatedaspartofthe5thAssessmentReportoftheIntergovernmentalPanelonClimateChange(IPCC)forclimatepolicyissues.EachSSPembodiesdifferentassumptionsabouttheglobalenergysystem'sfuture,andconsequentlycanbeusedtocalculatemineraldemandestimates.

SpeedofTransitionandTechnologicalProgress

Otherreportscreatedscenariosthatvariedthespeedandintensityoftheenergytransition,technologicalprogress,andincreasesinbothtechnologyandresourceefficiency.

Technologymixes

Technologiesemphasizedinthesereportsareunanimous,solarphotovoltaics(PV),windturbines,electricvehicles(EVs),batterystoragesystems,andelectricalgridexpansionareallcorecomponentsoftheseprojections.Thesetechnologiesarekeytoloweringgreenhousegasemissionsandsubsequentlydrivethedemandgrowthforcriticalmineralsthroughouttheprojectionperiod.

_____________________________________________________________________________

20

Othertechnologieswithinfluence

Otherclimate-orientedtechnologieslikecarboncaptureuse&sequestration(CCUS),hydrogen,orkeydevelopmentsinotherrenewableenergysourceslikegeothermal,canmakepreviouslylesssustainableoptionsmorefavorableforthefuture,ordrasticallyaltertheneedandcompetitivenessofothers.Whilenotallthereportssurveyeddirectlydelveintoalternativetechnologiesortheirdeployments,theyshouldbeconsideredwhencomparingcriticalmineraldemandprojections.

ResourceRequirements

Whilethetechnologiesacrossthesurveyedreportswerenearlyunanimous,thetranslationofthosetechnologiesintodemandforcriticalmineralsiswherekeymethodologicaldifferencesarise.Forexample,atotaloftwenty-eight(28)mineralsandmetalswerementionedinallthereportssurveyed,echoingthediversityofwhatpolicymakersconsidertobe“critical”minerals.Governmentshaveindependentlydevelopedlistsofwhichmaterialsconstitutesa“criticalmineral”dependingondomesticallyavailableresources,importdependencies,importancetodomesticenergysystems,manufacturingbase,energypolicypriorities,andothercriteria.

_____________________________________________________________________________

21

_____________________________________________________________________________

22

TopDownvs.BottomUp

Therearealsodifferingapproachestoestimatedemandforcriticalmineralsacrossthevarioustechnologies.

The“bottom-up"approachinvolvesestimatingthematerialrequirementsforeachtechnologydeployed,thenmodelingthegrowthofeachtechnologyacrosstheprojectionperiodandscenariostoarriveatanestimateforthequantityofcriticalmineralsrequired.

The“top-down”approachinvolvesestimatingthegrowthrateofvarioustechnologiesacrossascenario,andthenestimatingtherequiredcriticalmineralsbasedonthisgrowth.

IntensityandResourceEfficiencyAssumptions

Withbothbottom-upandtop-downapproaches,assumptionsneedtobemadeontheintensityofmaterialspertechnologydeployed–kilogramsoflithiumperelectricvehicle,forexample.Aswellasassumptionsonifthatmaterialintensitychangesovertime.Theseestimatescanvarywidelyacrossscenariosandprojectionsandareamajorcontributortovarianceacrossthedifferentreportssurveyed.

Conservativeassumptionsarelikelytotakepresentratesofmaterialintensityandholdthemmoreorlessconstantacrossaprojectionperiod.Meaning,thequantityofamaterialrequiredperunitofrenewableenergytechnologyisthesamein2050asitistoday.

Moreprogressiveassumptionsincludegradualorrapidincreasesinresourceefficiencyacrosstheprojectionperiod.Inotherwords,thequantityofmaterialrequiredperunitofrenewableenergytechnologyislessin2050thanitistoday.

Sub-TechnologiesandChemistryShifts

Estimatesofrequiredcriticalmineralscanalsovarybasedonchangeswithinarenewableenergytechnologycategory.Factorssuchascost,energyintensity,andconsumerbehaviorandpreferencescanshapefuturemarketsandsub-technologies.Thesesub-technologiesinturncanfurtherinfluencethespecificmineralsrequiredfortheenergytransition.

Forinstance,acrosssolarenergytherearedifferentsub-technologiesthathavevariouschemistriesandresourcerequirements.Thepotentialpreferenceforcadmiumtelluride(CdTe)solarcellsoverthecurrentlyprevalenttechnology-crystallinesiliconphotovoltaiccells-couldshiftthedemandformineralslikecadmiumandtelluriuminthefuture.

However,themostprevalentexampleofsub-technologiesdrivingchemistryshiftsoccursinbatteries.Changesinmineralprices,processingexpenses,policyincentives,technologicaldevelopment,andotherfactorshaveresultedinamultitudeofbatterycathodechemistrymixessuchasnickel,manganese,cobalt(NMC),nickel,cobalt,aluminumoxide(NCA),andlithium,iron,phosphate(LFP)batteries.

Ingeneral,NMCcathodesrequirenearlyeighttimesmorecobaltthanNCAlithiumbatteries,butonlyhalfthenickelamount.LFPbatteries,whichdonotrequirenickel,manganese,orcobalt,requiremorecopperthanNMCbatteriesandphosphorus,akeyingredientinlarge-scalefertilizerproduction.

_____________________________________________________________________________

23

Asaresultofthediversityinbatterycathodechemistry,changesinthepriceforoneormorebatteryrawmaterialscangreatlyinfluencetheprevailingorpredominantbatterytypedeployed.Suchshiftshavealreadyoccurredoverthecourseofthepast5-10yearsandarelikelytooccuragaininthefuture.Withinthepast5-years,highcobaltpricesandsupplychainissuesresultedinmanybatterymanufacturersshiftingtolow-cobaltbatterychemistries.Thenhighnickelpricesreducedthepricecompetitivenessofhigh-nickelcontentbatterychemistriesversusLFPbatteries.Thenin2022,asurgeinlithiumpricesledtoanincreaseinLFPbatterycostscomparedwithotherchemistries.WhileLFPbatteriesremainthemostaffordablebatterytechnologyperkilowatt-hour,asustainedincreaseinlithiumpricescouldslowdownthedeploymentofLFPasbatterychemistrypreference.

Thesedifferencesandthechangingadvancementsintechnologymakemineraldemandmodelsdifficulttoestimate.Thisresultsinawiderangeofmineraldemandestimates,evenwhen

_____________________________________________________________________________

24

researchersagreeonthewidescaledeploymentofaspecificlow-carbonorrenewableenergytechnology.

Recycling

Whileallreportssurveyedinthisstudysuggestthatrecyclingcanbeausefultoolinmanagingcriticalmaterialssupply,itisalsoamajorsourceofvarianceacrosscriticalmineralrequirementestimates.

Recyclingratesvarygreatlyacrossdifferentmineralsbecauseofcosts,complexities,compromisedqualityoffinalproduct,ormaterialavailability.Aluminumandcopperaretwoofthemostwidelyrecycledmaterialsaswellastwomaterialsthatoverlapacrossnumerouslow-carbonandrenewableenergytechnologies.Meanwhile,recyclingtechnologyforcertaincriticalmaterialsisstillbeingdevelopedandnotyetatscale.Additionally,dataisoftenlackingforrecyclingratesbeiteitherbymaterial,feedstocksource(batteries,solarpanels,scrap,etc.),orregion.

However,theassumptionsmadeonrecyclingratesintheseprojectionsgreatlyinfluencetheimplicationsfornewminerequirements,supplychaindiversity,sustainability,andpolicy.Conservativeassumptionsofstagnantrecyclingratesintothefutureformanymineralswouldlikelytranslateintoprojectionsshowingafargreaterneedfornewmines,mininginvestment,andsupplychainexpansion.Progressiveassumptionsofincreasingrecyclingratesornearfully-cycleclosedloopsupplychainswouldlikelyresultinprojectionswithfewerlong-termnewminesrequirements.Cobaltandlithiumaretwocriticalmaterialsthathavethehighestnear-termriskofdemandoutpacingsupplyaccordingtomanyofthereportssurveyedinthisstudy.Asignificantfuturesourceofbothcouldbefromincreasedrecyclingratesofend-of-lifeelectricvehiclebatteries.However,recyclinginfrastructureforEVbatteriesisstillinitsinfancy,andtherearestilltechnologicalchallengestoovercome.Forexample,lithiumistechnicallyrecyclablebutischallengingtoisolatefromothercathodematerialswithouttheuseofcostlyorganicreagents.

Acrosstheprojectionssurveyed,themedium-term,~2035-2045,isthekeymakeorbreakpointforEVrecyclingratesandthuslithium,cobalt,andseveralothermineralsupplyrequirements.ThisreflectsboththetimeneededforrecyclinginfrastructureandtechnologytomatureaswellasthetimeneededforEV’sshareofglobalvehiclefleetstogeneratesufficientfeedstock(end-of-lifebatteries)forascaled-uprecyclingindustry.

Conclusions

Theimpendingtransitiontolow-carbonenergytechnologieshasalreadyaffectedcriticalmineralsupplychains,prices,anddemand.Still,itwillcontinuetobeverydifficulttoaccuratelyforecast.Whileprojectionsunanimouslyenvisionintensedeploymentofbatteryelectricvehicles,wind,solar,andothermineral-intenseenergytechnologiestoachieveclimategoals.Continuousvariationsinenergymarkets,technologicaladvancements,costs,emissions,andconsumerpreferencesresultinanever-changingmineraldemandlandscape.

Althoughoutsidethescopeofthisreport,therearesignificantrisksonthesupplysidetotheseprojections.Whilemostmodelsdonotanticipatescarcityanddepletionofmineralresources,factorssuchasgeopolitics,decades-longdevelopmenttimelinesfornewmines,highcapital

_____________________________________________________________________________

25

requirements,increasingESGpressures,anddecliningorequalityindicateahighriskforperiodsofdemandexceedingsupply.

Whileprojectionsoffuturecriticalmineralsdemandrequirementsarenecessarytounderstandthescaleofthechallengeamineral-drivenenergytransitionpresents,itisequallynecessarytounderstandthevastamountofuncertaintythatisinherentinsuchprojections.Thereportssurveyedforthisreportshouldbeconsideredthefirstgenerationoftheirkind.Improveddatacollectionandincreasedcollaborationbetweentheenergymodelingcommunityandthemetalsandminingcommunitywillyieldbetter,standardized,andmorecomprehensiveoutlooksinthefuture.

_____________________________________________________________________________

26

References

.Bain,J.(2021).GridParity:TheArtofFinancingRenewableEnergyProjectsintheU.S.Springer.

.Bingoto,P.,Foucart,M.,Gusakova,M.,Hundertmark,T.,&VanHoey,M.(2021).Thefutureofcriticalmineralsinthenet-zerotransition.McKinsey&Company.

.Dominish,E.,Florin,N.,&Teske,S.(2019).ResponsibleMineralsSourcingforRenewableEnergy.ReportpreparedforEarthworksbytheInstituteforSustainableFutures,UniversityofTechnologySydney.

.EnergyTransitionsCommission.(2023).MaterialandResourceRequirementsfortheEnergyTransition.

.GermanMineralResourcesAgency(DERA).(2021).Rawmaterialsforemergingtechnologies2021.CommissionedbytheFederalInstituteforGeosciencesandNaturalResources(BGR),Berlin.

.Gielen,D.(2021).Criticalmineralsfortheenergytransition.InternationalRenewableEnergyAgency,AbuDhabi.

.InternationalEnergyAgency(2021).TheRoleofCriticalMineralsinCleanEnergyTransitions.InternationalEnergyAgency.

.InternationalEnergyAgency(2023).CriticalMineralsMarketReview2023.International

EnergyAgency.

.InternationalRenewableEnergyAgency(2023).Geopoliticsoftheenergytransition:Criticalmaterials.InternationalRenewableEnergyAgency,AbuDhabi.

.InternationalRenewableEnergyAgency(2023).WorldEnergyTransitionsOutlook2023:

1.5°CPathway,Volume1.InternationalRenewableEnergyAgency,AbuDhabi.

.KULeuven.(2022).MetalsforCleanEnergy.MetalsCleanEnergy.

.WorldBank(2020).MineralsforClimateAction:TheMineralIntensityoftheCleanEnergyTransition.WorldBank.

.UnitedStatesGeologicSurvey,USGS(2023).MineralCommoditySummaries,variousmetals.

_____________________________________________________________________________

27

Appendix:BackgroundsofSurveyedReports

.IRENA(2021;2023),broadlydiscusshowinnovationwillaffectdemandforcriticalmaterialsandtheneedforacomprehensivepolicyframeworkthatnotonlytransformsenergysystemsbutalsoprotectspeople,livelihoods,andjobs.IRENA(2023),uniquelyhighlightsthegeopoliticalaspectsofcriticalminerals,includingtheconcentrationofproductioninafewcountriesandthepotentialforsupplydisruptionsduetotradetensionsorotherfactors.AllthreereportsfromIRENAdepictstrategiestomitigatecriticalmaterialsdependencies,includingrecycling,substitution,anddiversificationofsupplysources.

.IEAreports(2022;2023)highlighttheimportanceofcriticalmineralsforthetransitiontoalow-carbonenergysystemandidentifypotentialrisksandchallengesassociatedwiththeirsupplyanddemand.IEAprovidessomeofthemoredetailedanalysisanddeepdivesintothekeymineraldemandandsupplyprojections.Also,thesereportsprovideacomprehensiveoverviewofthecurrentstateofcriticalmineralsinvestmentsandmarkettrends,andtheyresponddirectlytotherequestsintheG7Five-PointPlanforcriticalmineralssecurity.

.WorldBank(2020)MineralsforClimatereportexaminesthepotentialfordifferentcountriesandregionstodeveloptheirowncriticalmineralresourcesandsupplychains,andthepotentialimplicationsforglobaltradeandgeopolitics.Thepaperisuniqueinitscomprehensiveanalysisofthemineralintensityofthecleanenergytransition,itsdetailedexaminationofthepotentialenvironmentalandsocialimpactsofcriticalmineralproductionanddisposal,anditsglobalperspectiveontheimplicationsofthecleanenergytransitionformineralmarkets,trade,andgeopolitics.

.UniversityofTechnologySydney:InstituteforSustainableFutures,ISF(2019),offersforecastsregardingthefutureneedformetals,whicharedesignedbasedonanaggressiverenewableenergysituation.Thestudyevaluatesthesupplyuncertaintiesconnectedwiththecentralizedproductionandreserves,thepercentageofrenewableenergyinend-use,andthecriticalnatureofthesupplychain.Moreover,thereportcriticallyexaminestheidentifiedimpactsofminingontheenvironment,health,andhumanrights.

.McKinsey&Company(2021)emphasizestheimportanceofsustainabilityinthetransitiontoanet-zeroemissionseconomyandhowtheindustryshouldcomplywithorexceedtheenvironmental,social,andgovernancestandards.Thepaperprovidesrecommendationsforpolicymakersandindustryleaderstoensureasecureandsustainablesupplyofcriticalminerals.Theauthorsproposestrategiesforincreasingthe

productionofcriticalminerals,improvingtherecyclingandreuseofthesematerials,and reducingtheenvironmentalandsocialimpactsofminingandprocessingthesematerials..GermanMi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论