版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
F
CriticalMinerals
OutlooksComparison
AReportbytheInternationalEnergyForumandThePayneInstituteofPublicPolicyattheColoradoSchoolofMines
August2023
AreportbytheInternationalEnergyForumandThePayneInstituteofPublicPolicyattheColoradoSchoolofMines
August2023
Writtenandproducedby:
JulietAkamboe
EbenezerManful-Sam
FelixAyaburi
MasonHamilton
MorganBazilian
jsakamboe@
manfulsam@
fzayaburi@
mason.hamilton@
mbazilian@
AbouttheInternationalEnergyForum
TheInternationalEnergyForum(IEF)istheworld'slargestinternationalorganizationofenergyministersfrom71countriesandincludesbothproducingandconsumingnations.TheIEFhasabroadmandatetoexamineallenergyissuesincludingoilandgas,cleanandrenewableenergy,sustainability,energytransitionsandnewtechnologies,datatransparency,andenergyaccess.ThroughtheForumanditsassociatedevents,officials,industryexecutives,andotherexpertsengageinadialogueofincreasingimportancetoglobalenergysecurityandsustainability.
AboutThePayneInstitute
ThemissionofthePayneInstituteatColoradoSchoolofMinesistoprovideworld-classscientificinsights,helpingtoinformandshapepublicpolicyonearthresources,energy,andenvironment.TheInstitutewasestablishedwithanendowmentfromJimandArlenePayne,andseekstolinkthestrongscientificandengineeringresearchandexpertiseatMineswithissuesrelatedtopublicpolicyandnationalsecurity.ThePayneInstituteextendstopublicpolicyMines’convictionthatenergyandtheenvironmentmust–andcan–fruitfullycoexist.
TableofContents
Introduction
3
KeyFindings
5
Aluminum
5
Cobalt
7
Copper
9
Graphite
11
Lithium
13
Neodymium
15
Nickel
16
Silver
18
EnergyScenarios
20
ClimateOutcomeDriven
20
SharedEconomicPathways
20
SpeedofTransitionandTechnologicalProgress
20
Technologymixes
20
Othertechnologieswithinfluence
21
ResourceRequirements
21
TopDownvs.BottomUp
23
IntensityandResourceEfficiencyAssumptions
23
Sub-TechnologiesandChemistryShifts
23
Recycling
25
Conclusions
25
References
27
Appendix:BackgroundsofSurveyedReports
28
_____________________________________________________________________________
2
Introduction
Historically,theenergysectorconstitutedonlyaminorpartofcriticalmineralssupplychainsandmarkets.However,withtheaccelerationofenergytransitions,cleanenergytechnologieshaverapidlyemergedasthesegmentwiththefastestgrowthindemand.
Thishascapturedpublicattentionglobally,andcreatedvarioustrade,market,andgeopoliticalissues.Asaresult,numerousanalyticalscenarioshavebeenproducedtobetterunderstandthisrapidlychangingandcomplexlandscape.
Inafuturetrajectoryalignedwithclimategoals,theproportionoftotalmineralsdemandaccountedforbycleanenergytechnologieswillrisesignificantlyovertheforthcomingtwodecades.Electricvehicles(EVs)andbatterystoragetechnologieshavealreadysupersededconsumerelectronicstobecomethelargestconsumersoflithium,andtheyareprojectedtosurpassstainlesssteeltobecometheprimaryendusersofnickelby2040,andbatteryanodesshareofgraphitedemandhasincreased250%since2018.
Asaresult,severalquantitativedemandmodelshavebeendevelopedtohelpunderstandthescaleofgrowth,andwhethermaterialshortageswillbecomeanobstacletothedeploymentofcleanenergytechnologies.
Thisreportisanon-comprehensivemeta-analysisof11publiclyavailablereportswhichincludevariousassumptionsforenergyandtechnologyscenarios,andtheirresultingcriticalmineralrequirements.Thisexerciseismeanttohighlightkeyinsightsforcriticalmineralsdecisionmakers.Thereportsarefromeightagenciesandorganizationsacrossdifferentgeographies,spanningfrom2019to2023.
.InternationalRenewableEnergyAgency(IRENA)
oWorldEnergyTransitionsOutlook,2023
oGeopoliticsoftheEnergyTransition,2023
oCriticalMineralsfortheEnergyTransition,2021
.InternationalEnergyAgency(IEA)
oTheRoleofCriticalMineralsinCleanEnergyTransitions,2022
oCriticalMineralsMarketReview,2023
.WorldBank
oMineralsforClimateAction,2020
.InstituteforSustainableFuture(ISF)
oTheRoleofCriticalMineralsinCleanEnergyTransitions,2019
.McKinsey&Company
oTheFutureofCriticalMineralsintheNet-ZeroTransition,2021
.CatholicUniversityofLuven(KULuven)
oMetalsforCleanEnergy:PathwaystoSolvingEurope’sRawMaterialsChallenge,2022
.EnergyTransitionsCommission(ETC)
oMineralandResourceRequirementsfortheEnergyTransition,2023
.GermanMineralResourcesAgency(DERA)
oRawMaterialsforEmergingTechnologies,2021
_____________________________________________________________________________
3
All11reportsconsideredconcurontheincreasingdemandformineralsandtheircentralroleintheenergytransition.However,acrossthe11reports,28differentmineralsandmetalsarementioned,withsufficientdatatocompareonlyeight:aluminum,cobalt,copper,graphite,lithium,neodymium,nickel,andsilver.
Thesedemandprojectionsareinherentlysubjecttolargevariations.Disparitiesintheirspecificmineraldemandprojectionsreflectthedifferenttypesofenergyscenarioschosen,themixoftechnologiesdeployed,assumptionsonresourceintensity,technologydevelopments,andrecyclingrates.
Whileoutsidethescopeofthisreport,thesupplysidealsopresentsconsiderablechallengestolong-termforecaststhatmeritadditionalstudyanddiscussion.Manyofthereportssurveyedhighlightedtheriskstotheirprojectionsfromsupplysiderisks,butonlyafewincorporatedsupplyforecastsalongsidetheirdemandprojections.Allreportssurveyednotedtheimportanceofresponsiblesourcing,supplychaintransparency,recycling,andimprovedminingandprocessingefficiency.
Understandingthepotentialmineraldemandsassociatedwiththecleanenergytransitioniscrucialforpolicymakers,mineralproducers,renewableenergydevelopers,andcivilsocietyorganizationstounlockinvestment,setachievableclimatepolicies,andgainpublicacceptanceofnewmines.
_____________________________________________________________________________
4
KeyFindings
Aluminum
_____________________________________________________________________________
5
_____________________________________________________________________________
6
Cobalt
_____________________________________________________________________________
7
。
Copper
_____________________________________________________________________________
9
_____________________________________________________________________________
10
Graphite
_____________________________________________________________________________
11
_____________________________________________________________________________
12
Lithium
_____________________________________________________________________________
13
_____________________________________________________________________________
14
Neodymium
Note:ProductiondataofNeodymiuminU.S.GeologicalSurveydataiscategorizedwithother“RareEarthElements”andnotpublishedindividually.
_____________________________________________________________________________
15
Nickel
_____________________________________________________________________________
16
_____________________________________________________________________________
17
Silver
_____________________________________________________________________________
18
_____________________________________________________________________________
19
EnergyScenarios
Thevariousreportshavedifferentenergyandtechnologyscenariostocalculatecriticalmineralrequirementsunderarangeofconditions.
ClimateOutcomeDriven
Multiplescenarioswerecreatedwithaspecificclimate-basedoutcomebyacertaindateasthegoal,andthenmodelstheenergysystemrequiredtoachievethatgoal.
Inthiscollectionofreports,climateoutcomedrivenscenariosrangedfromlimitingglobalaveragetemperatureriseto1.5°Cby2050,alignedwiththeIPCCspecialreport,to1.7°C,orto2°Cincrease.
CommonlyusedscenarioswerederivedfromInternationalEnergyAgencyscenarios,suchastheAnnouncedPoliciesScenario(APS),associatedwitha1.7°Ctemperatureriseby2100,andtheNet-ZeroEnergyScenario(NZE),associatedwitha1.5°Ctemperaturerise.
Additionally,severalreportsusedIEAscenariosdevelopedpriortotheuseofAPSandNZE,suchastheStatedPoliciesScenario(SPS),andtheSustainableDevelopmentScenario(SDS).TheSTEPSscenarioembodiesthepresentpolicylandscape,basedonasector-wiseappraisalofspecificpoliciesinplaceandthoseannouncedbygovernmentsglobally.Incontrast,theSDSscenarioenvisionsapathwaythatfullyrealizesglobalgoalstocombatclimatechangeinaccordancewiththeParisAgreement,ensuresuniversalenergyaccess,andsignificantlycurbsairpollution.Thisscenariopresupposesthefulfilmentofallexistingnet-zeropledges,withconcertedeffortstoachievenear-termemissionsreductions;advancedeconomiesareprojectedtoreachnet-zeroemissionsby2050,Chinaby2060,andallothernationsby2070atthelatest.
SharedEconomicPathways
TheSharedSocioeconomicPathways(SSPs),werecreatedaspartofthe5thAssessmentReportoftheIntergovernmentalPanelonClimateChange(IPCC)forclimatepolicyissues.EachSSPembodiesdifferentassumptionsabouttheglobalenergysystem'sfuture,andconsequentlycanbeusedtocalculatemineraldemandestimates.
SpeedofTransitionandTechnologicalProgress
Otherreportscreatedscenariosthatvariedthespeedandintensityoftheenergytransition,technologicalprogress,andincreasesinbothtechnologyandresourceefficiency.
Technologymixes
Technologiesemphasizedinthesereportsareunanimous,solarphotovoltaics(PV),windturbines,electricvehicles(EVs),batterystoragesystems,andelectricalgridexpansionareallcorecomponentsoftheseprojections.Thesetechnologiesarekeytoloweringgreenhousegasemissionsandsubsequentlydrivethedemandgrowthforcriticalmineralsthroughouttheprojectionperiod.
_____________________________________________________________________________
20
Othertechnologieswithinfluence
Otherclimate-orientedtechnologieslikecarboncaptureuse&sequestration(CCUS),hydrogen,orkeydevelopmentsinotherrenewableenergysourceslikegeothermal,canmakepreviouslylesssustainableoptionsmorefavorableforthefuture,ordrasticallyaltertheneedandcompetitivenessofothers.Whilenotallthereportssurveyeddirectlydelveintoalternativetechnologiesortheirdeployments,theyshouldbeconsideredwhencomparingcriticalmineraldemandprojections.
ResourceRequirements
Whilethetechnologiesacrossthesurveyedreportswerenearlyunanimous,thetranslationofthosetechnologiesintodemandforcriticalmineralsiswherekeymethodologicaldifferencesarise.Forexample,atotaloftwenty-eight(28)mineralsandmetalswerementionedinallthereportssurveyed,echoingthediversityofwhatpolicymakersconsidertobe“critical”minerals.Governmentshaveindependentlydevelopedlistsofwhichmaterialsconstitutesa“criticalmineral”dependingondomesticallyavailableresources,importdependencies,importancetodomesticenergysystems,manufacturingbase,energypolicypriorities,andothercriteria.
_____________________________________________________________________________
21
_____________________________________________________________________________
22
TopDownvs.BottomUp
Therearealsodifferingapproachestoestimatedemandforcriticalmineralsacrossthevarioustechnologies.
The“bottom-up"approachinvolvesestimatingthematerialrequirementsforeachtechnologydeployed,thenmodelingthegrowthofeachtechnologyacrosstheprojectionperiodandscenariostoarriveatanestimateforthequantityofcriticalmineralsrequired.
The“top-down”approachinvolvesestimatingthegrowthrateofvarioustechnologiesacrossascenario,andthenestimatingtherequiredcriticalmineralsbasedonthisgrowth.
IntensityandResourceEfficiencyAssumptions
Withbothbottom-upandtop-downapproaches,assumptionsneedtobemadeontheintensityofmaterialspertechnologydeployed–kilogramsoflithiumperelectricvehicle,forexample.Aswellasassumptionsonifthatmaterialintensitychangesovertime.Theseestimatescanvarywidelyacrossscenariosandprojectionsandareamajorcontributortovarianceacrossthedifferentreportssurveyed.
Conservativeassumptionsarelikelytotakepresentratesofmaterialintensityandholdthemmoreorlessconstantacrossaprojectionperiod.Meaning,thequantityofamaterialrequiredperunitofrenewableenergytechnologyisthesamein2050asitistoday.
Moreprogressiveassumptionsincludegradualorrapidincreasesinresourceefficiencyacrosstheprojectionperiod.Inotherwords,thequantityofmaterialrequiredperunitofrenewableenergytechnologyislessin2050thanitistoday.
Sub-TechnologiesandChemistryShifts
Estimatesofrequiredcriticalmineralscanalsovarybasedonchangeswithinarenewableenergytechnologycategory.Factorssuchascost,energyintensity,andconsumerbehaviorandpreferencescanshapefuturemarketsandsub-technologies.Thesesub-technologiesinturncanfurtherinfluencethespecificmineralsrequiredfortheenergytransition.
Forinstance,acrosssolarenergytherearedifferentsub-technologiesthathavevariouschemistriesandresourcerequirements.Thepotentialpreferenceforcadmiumtelluride(CdTe)solarcellsoverthecurrentlyprevalenttechnology-crystallinesiliconphotovoltaiccells-couldshiftthedemandformineralslikecadmiumandtelluriuminthefuture.
However,themostprevalentexampleofsub-technologiesdrivingchemistryshiftsoccursinbatteries.Changesinmineralprices,processingexpenses,policyincentives,technologicaldevelopment,andotherfactorshaveresultedinamultitudeofbatterycathodechemistrymixessuchasnickel,manganese,cobalt(NMC),nickel,cobalt,aluminumoxide(NCA),andlithium,iron,phosphate(LFP)batteries.
Ingeneral,NMCcathodesrequirenearlyeighttimesmorecobaltthanNCAlithiumbatteries,butonlyhalfthenickelamount.LFPbatteries,whichdonotrequirenickel,manganese,orcobalt,requiremorecopperthanNMCbatteriesandphosphorus,akeyingredientinlarge-scalefertilizerproduction.
_____________________________________________________________________________
23
Asaresultofthediversityinbatterycathodechemistry,changesinthepriceforoneormorebatteryrawmaterialscangreatlyinfluencetheprevailingorpredominantbatterytypedeployed.Suchshiftshavealreadyoccurredoverthecourseofthepast5-10yearsandarelikelytooccuragaininthefuture.Withinthepast5-years,highcobaltpricesandsupplychainissuesresultedinmanybatterymanufacturersshiftingtolow-cobaltbatterychemistries.Thenhighnickelpricesreducedthepricecompetitivenessofhigh-nickelcontentbatterychemistriesversusLFPbatteries.Thenin2022,asurgeinlithiumpricesledtoanincreaseinLFPbatterycostscomparedwithotherchemistries.WhileLFPbatteriesremainthemostaffordablebatterytechnologyperkilowatt-hour,asustainedincreaseinlithiumpricescouldslowdownthedeploymentofLFPasbatterychemistrypreference.
Thesedifferencesandthechangingadvancementsintechnologymakemineraldemandmodelsdifficulttoestimate.Thisresultsinawiderangeofmineraldemandestimates,evenwhen
_____________________________________________________________________________
24
researchersagreeonthewidescaledeploymentofaspecificlow-carbonorrenewableenergytechnology.
Recycling
Whileallreportssurveyedinthisstudysuggestthatrecyclingcanbeausefultoolinmanagingcriticalmaterialssupply,itisalsoamajorsourceofvarianceacrosscriticalmineralrequirementestimates.
Recyclingratesvarygreatlyacrossdifferentmineralsbecauseofcosts,complexities,compromisedqualityoffinalproduct,ormaterialavailability.Aluminumandcopperaretwoofthemostwidelyrecycledmaterialsaswellastwomaterialsthatoverlapacrossnumerouslow-carbonandrenewableenergytechnologies.Meanwhile,recyclingtechnologyforcertaincriticalmaterialsisstillbeingdevelopedandnotyetatscale.Additionally,dataisoftenlackingforrecyclingratesbeiteitherbymaterial,feedstocksource(batteries,solarpanels,scrap,etc.),orregion.
However,theassumptionsmadeonrecyclingratesintheseprojectionsgreatlyinfluencetheimplicationsfornewminerequirements,supplychaindiversity,sustainability,andpolicy.Conservativeassumptionsofstagnantrecyclingratesintothefutureformanymineralswouldlikelytranslateintoprojectionsshowingafargreaterneedfornewmines,mininginvestment,andsupplychainexpansion.Progressiveassumptionsofincreasingrecyclingratesornearfully-cycleclosedloopsupplychainswouldlikelyresultinprojectionswithfewerlong-termnewminesrequirements.Cobaltandlithiumaretwocriticalmaterialsthathavethehighestnear-termriskofdemandoutpacingsupplyaccordingtomanyofthereportssurveyedinthisstudy.Asignificantfuturesourceofbothcouldbefromincreasedrecyclingratesofend-of-lifeelectricvehiclebatteries.However,recyclinginfrastructureforEVbatteriesisstillinitsinfancy,andtherearestilltechnologicalchallengestoovercome.Forexample,lithiumistechnicallyrecyclablebutischallengingtoisolatefromothercathodematerialswithouttheuseofcostlyorganicreagents.
Acrosstheprojectionssurveyed,themedium-term,~2035-2045,isthekeymakeorbreakpointforEVrecyclingratesandthuslithium,cobalt,andseveralothermineralsupplyrequirements.ThisreflectsboththetimeneededforrecyclinginfrastructureandtechnologytomatureaswellasthetimeneededforEV’sshareofglobalvehiclefleetstogeneratesufficientfeedstock(end-of-lifebatteries)forascaled-uprecyclingindustry.
Conclusions
Theimpendingtransitiontolow-carbonenergytechnologieshasalreadyaffectedcriticalmineralsupplychains,prices,anddemand.Still,itwillcontinuetobeverydifficulttoaccuratelyforecast.Whileprojectionsunanimouslyenvisionintensedeploymentofbatteryelectricvehicles,wind,solar,andothermineral-intenseenergytechnologiestoachieveclimategoals.Continuousvariationsinenergymarkets,technologicaladvancements,costs,emissions,andconsumerpreferencesresultinanever-changingmineraldemandlandscape.
Althoughoutsidethescopeofthisreport,therearesignificantrisksonthesupplysidetotheseprojections.Whilemostmodelsdonotanticipatescarcityanddepletionofmineralresources,factorssuchasgeopolitics,decades-longdevelopmenttimelinesfornewmines,highcapital
_____________________________________________________________________________
25
requirements,increasingESGpressures,anddecliningorequalityindicateahighriskforperiodsofdemandexceedingsupply.
Whileprojectionsoffuturecriticalmineralsdemandrequirementsarenecessarytounderstandthescaleofthechallengeamineral-drivenenergytransitionpresents,itisequallynecessarytounderstandthevastamountofuncertaintythatisinherentinsuchprojections.Thereportssurveyedforthisreportshouldbeconsideredthefirstgenerationoftheirkind.Improveddatacollectionandincreasedcollaborationbetweentheenergymodelingcommunityandthemetalsandminingcommunitywillyieldbetter,standardized,andmorecomprehensiveoutlooksinthefuture.
_____________________________________________________________________________
26
References
.Bain,J.(2021).GridParity:TheArtofFinancingRenewableEnergyProjectsintheU.S.Springer.
.Bingoto,P.,Foucart,M.,Gusakova,M.,Hundertmark,T.,&VanHoey,M.(2021).Thefutureofcriticalmineralsinthenet-zerotransition.McKinsey&Company.
.Dominish,E.,Florin,N.,&Teske,S.(2019).ResponsibleMineralsSourcingforRenewableEnergy.ReportpreparedforEarthworksbytheInstituteforSustainableFutures,UniversityofTechnologySydney.
.EnergyTransitionsCommission.(2023).MaterialandResourceRequirementsfortheEnergyTransition.
.GermanMineralResourcesAgency(DERA).(2021).Rawmaterialsforemergingtechnologies2021.CommissionedbytheFederalInstituteforGeosciencesandNaturalResources(BGR),Berlin.
.Gielen,D.(2021).Criticalmineralsfortheenergytransition.InternationalRenewableEnergyAgency,AbuDhabi.
.InternationalEnergyAgency(2021).TheRoleofCriticalMineralsinCleanEnergyTransitions.InternationalEnergyAgency.
.InternationalEnergyAgency(2023).CriticalMineralsMarketReview2023.International
EnergyAgency.
.InternationalRenewableEnergyAgency(2023).Geopoliticsoftheenergytransition:Criticalmaterials.InternationalRenewableEnergyAgency,AbuDhabi.
.InternationalRenewableEnergyAgency(2023).WorldEnergyTransitionsOutlook2023:
1.5°CPathway,Volume1.InternationalRenewableEnergyAgency,AbuDhabi.
.KULeuven.(2022).MetalsforCleanEnergy.MetalsCleanEnergy.
.WorldBank(2020).MineralsforClimateAction:TheMineralIntensityoftheCleanEnergyTransition.WorldBank.
.UnitedStatesGeologicSurvey,USGS(2023).MineralCommoditySummaries,variousmetals.
_____________________________________________________________________________
27
Appendix:BackgroundsofSurveyedReports
.IRENA(2021;2023),broadlydiscusshowinnovationwillaffectdemandforcriticalmaterialsandtheneedforacomprehensivepolicyframeworkthatnotonlytransformsenergysystemsbutalsoprotectspeople,livelihoods,andjobs.IRENA(2023),uniquelyhighlightsthegeopoliticalaspectsofcriticalminerals,includingtheconcentrationofproductioninafewcountriesandthepotentialforsupplydisruptionsduetotradetensionsorotherfactors.AllthreereportsfromIRENAdepictstrategiestomitigatecriticalmaterialsdependencies,includingrecycling,substitution,anddiversificationofsupplysources.
.IEAreports(2022;2023)highlighttheimportanceofcriticalmineralsforthetransitiontoalow-carbonenergysystemandidentifypotentialrisksandchallengesassociatedwiththeirsupplyanddemand.IEAprovidessomeofthemoredetailedanalysisanddeepdivesintothekeymineraldemandandsupplyprojections.Also,thesereportsprovideacomprehensiveoverviewofthecurrentstateofcriticalmineralsinvestmentsandmarkettrends,andtheyresponddirectlytotherequestsintheG7Five-PointPlanforcriticalmineralssecurity.
.WorldBank(2020)MineralsforClimatereportexaminesthepotentialfordifferentcountriesandregionstodeveloptheirowncriticalmineralresourcesandsupplychains,andthepotentialimplicationsforglobaltradeandgeopolitics.Thepaperisuniqueinitscomprehensiveanalysisofthemineralintensityofthecleanenergytransition,itsdetailedexaminationofthepotentialenvironmentalandsocialimpactsofcriticalmineralproductionanddisposal,anditsglobalperspectiveontheimplicationsofthecleanenergytransitionformineralmarkets,trade,andgeopolitics.
.UniversityofTechnologySydney:InstituteforSustainableFutures,ISF(2019),offersforecastsregardingthefutureneedformetals,whicharedesignedbasedonanaggressiverenewableenergysituation.Thestudyevaluatesthesupplyuncertaintiesconnectedwiththecentralizedproductionandreserves,thepercentageofrenewableenergyinend-use,andthecriticalnatureofthesupplychain.Moreover,thereportcriticallyexaminestheidentifiedimpactsofminingontheenvironment,health,andhumanrights.
.McKinsey&Company(2021)emphasizestheimportanceofsustainabilityinthetransitiontoanet-zeroemissionseconomyandhowtheindustryshouldcomplywithorexceedtheenvironmental,social,andgovernancestandards.Thepaperprovidesrecommendationsforpolicymakersandindustryleaderstoensureasecureandsustainablesupplyofcriticalminerals.Theauthorsproposestrategiesforincreasingthe
productionofcriticalminerals,improvingtherecyclingandreuseofthesematerials,and reducingtheenvironmentalandsocialimpactsofminingandprocessingthesematerials..GermanMi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 只包工合同范本
- 建筑用天然石料相关项目投资计划书
- 04版租赁物业维修服务合同
- 《二元经济转型中技术创新效应分析》
- 《论晓雪的诗歌》
- 郑州大学《章草临摹》2021-2022学年第一学期期末试卷
- 科研相关项目投资计划书范本
- 郑州大学《艺术考察》2021-2022学年第一学期期末试卷
- 2024年度城市绿化工程设计与施工合同
- 2024年度大院清洁服务承包合同
- 《讲文明 懂礼貌》班会课件 (共19张PPT)
- 食品分析习题(有答案)
- 工程造价实训任务书
- 中学德育课程体系
- 全国计算机等级考试一级教程计算机基础及MSOffice应用课件
- 《学生学习困难成因及对策研究》课题中期报告
- 4-72系列风机使用说明书
- (城市)马拉松赛策划方案
- 团队形成五个阶段
- 幼儿绘本故事:《摩天轮》原版PPT课件
- 《服装搭配技巧》PPT课件(完整版)
评论
0/150
提交评论