4讲离散型随机变量的分布列_第1页
4讲离散型随机变量的分布列_第2页
4讲离散型随机变量的分布列_第3页
4讲离散型随机变量的分布列_第4页
4讲离散型随机变量的分布列_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4讲离散型随机变量的分布列【2013年高考会这样考】1.考查离散型随机变量及其分布列的概念理解;2.两点分布和超几何分布的简单应用.【复习指导】复习时,要会求与现实生活有密切联系的离散型随机变量的分布列,掌握两点分布与超几何分布列,并会应用.基础梳理1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.(3)分布列设离散型随机变量X可能取得值为x1,x2,…,xi,…xn,X取每一个值xi(i=1,2,…,n)的概率为P(X=xi)=pi,则称表Xx1x2…xi…xnPp1p2…pi…pn为随机变量X的概率分布列,简称X的分布列.(4)分布列的两个性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=_1_。2.两点分布如果随机变量X的分布列为X10Ppq其中0<p〈1,q=1-p,则称离散型随机变量X服从参数为p的两点分布.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为:P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N))(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n、M、N∈N*,则称分布列X01…mPeq\f(C\o\al(0,M)·C\o\al(n-0,N-M),C\o\al(n,N))eq\f(C\o\al(1,M)C\o\al(n-1,N-M),C\o\al(n,N))…eq\f(C\o\al(m,M)C\o\al(n-m,N-M),C\o\al(n,N))为超几何分布列.一类表格统计就是通过采集数据,用图表或其他方法去处理数据,利用一些重要的特征数信息进行评估并做出决策,而离散型随机变量的分布列就是进行数据处理的一种表格.第一行数据是随机变量的取值,把试验的所有结果进行分类,分为若干个事件,随机变量的取值,就是这些事件的代码;第二行数据是第一行数据代表事件的概率,利用离散型随机变量的分布列,很容易求出其期望和方差等特征值.两条性质(1)第二行数据中的数都在(0,1)内;(2)第二行所有数的和等于1.三种方法(1)由统计数据得到离散型随机变量分布列;(2)由古典概型求出离散型随机变量分布列;(3)由互斥事件、独立事件的概率求出离散型随机变量分布列.双基自测1.抛掷均匀硬币一次,随机变量为().A.出现正面的次数B.出现正面或反面的次数C.掷硬币的次数D.出现正、反面次数之和解析抛掷均匀硬币一次出现正面的次数为0或1.答案A2.如果X是一个离散型随机变量,那么下列命题中假命题是().A.X取每个可能值的概率是非负实数B.X取所有可能值的概率之和为1C.X取某2个可能值的概率等于分别取其中每个值的概率之和D.X在某一范围内取值的概率大于它取这个范围内各个值的概率之和3.已知随机变量X的分布列为:P(X=k)=eq\f(1,2k),k=1,2,…,则P(2〈X≤4)等于().A。eq\f(3,16)B。eq\f(1,4)C。eq\f(1,16)D.eq\f(5,16)解析P(2〈X≤4)=P(X=3)+P(X=4)=eq\f(1,23)+eq\f(1,24)=eq\f(3,16).答案A4.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X,则X的所有可能取值个数为().A.25B.10C.7D.6解析X的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9。答案C5.设某运动员投篮投中的概率为P=0。3,则一次投篮时投中次数的分布列是________.解析此分布列为两点分布列.答案X01P0。70。3考向一由统计数据求离散型随机变量的分布列【例1】►(2011·北京改编)以下茎叶图记录了甲、乙两组各四名同学的植树棵数分别从甲、乙两组中各随机选取一名同学(1)求这两名同学的植树总棵数y的分布列;(2)每植一棵树可获10元,求这两名同学获得钱数的数学期望.[审题视点]本题解题的关键是求出Y的取值及取每一个值的概率,注意用分布列的性质进行检验.解(1)分别从甲、乙两组中随机选取一名同学的方法种数是4×4=16,这两名同学植树总棵数Y的取值分别为17,18,19,20,21,P(Y=17)=eq\f(2,16)=eq\f(1,8)P(Y=18)=eq\f(4,16)=eq\f(1,4)P(Y=19)=eq\f(4,16)=eq\f(1,4)P(Y=20)=eq\f(4,16)=eq\f(1,4)P(Y=21)=eq\f(2,16)=eq\f(1,8)则随机变量Y的分布列是:Y1718192021Peq\f(1,8)eq\f(1,4)eq\f(1,4)eq\f(1,4)eq\f(1,8)(2)由(1)知E(Y)=eq\f(17,8)+eq\f(18,4)+eq\f(19,4)+eq\f(20,4)+eq\f(21,8)=19,设这名同学获得钱数为X元,则X=10Y,则E(X)=10E(Y)=190.(1)可设出随机变量Y,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.【训练1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%。下表是过去200例类似项目开发的实施结果:投资成功投资失败192次8次则该公司一年后估计可获收益的期望是________.解析设该公司一年后估计可获得的钱数为X元,则随机变量X的取值分别为50000×12%=6000(元),-50000×50%=-25000(元).由已知条件随机变量X的概率分布列是X6000-25000Peq\f(24,25)eq\f(1,25)因此E(X)=6000×eq\f(24,25)+(-25000)×eq\f(1,25)=4760答案4760考向二由古典概型求离散型随机变量的分布列【例2】►袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为eq\f(1,7).现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X表示取球终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量X的分布列;(3)求甲取到白球的概率.[审题视点]对变量的取值要做到不重不漏,计算概率要准确.解(1)设袋中白球共有x个,根据已知条件eq\f(C\o\al(2,x),C\o\al(2,7))=eq\f(1,7),即x2-x-6=0,解得x=3,或x=-2(舍去).(2)X表示取球终止时所需要的次数,则X的取值分别为:1,2,3,4,5。因此,P(X=1)=eq\f(A\o\al(1,3),A\o\al(1,7))=eq\f(3,7),P(X=2)=eq\f(A\o\al(1,4)A\o\al(1,3),A\o\al(2,7))=eq\f(2,7),P(X=3)=eq\f(A\o\al(2,4)A\o\al(1,3),A\o\al(3,7))=eq\f(6,35),P(X=4)=eq\f(A\o\al(3,4)A\o\al(1,3),A\o\al(4,7))=eq\f(3,35),P(X=5)=eq\f(A\o\al(4,4)A\o\al(1,3),A\o\al(5,7))=eq\f(1,35)。则随机变量X的分布列为:X12345Peq\f(3,7)eq\f(2,7)eq\f(6,35)eq\f(3,35)eq\f(1,35)(3)甲取到白球的概率为P=eq\f(A\o\al(1,3),A\o\al(1,7))+eq\f(A\o\al(2,4)A\o\al(1,3),A\o\al(3,7))+eq\f(A\o\al(4,4)A\o\al(1,3),A\o\al(5,7))=eq\f(3,7)+eq\f(6,35)+eq\f(1,35)=eq\f(22,35)。求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.而超几何分布就是此类问题中的一种.【训练2】(2011·江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.解(1)X的所有可能取值为:0,1,2,3,4,P(X=i)=eq\f(C\o\al(i,4)C\o\al(4-i,4),C\o\al(4,8))(i=0,1,2,3,4),则X01234Peq\f(1,70)eq\f(8,35)eq\f(18,35)eq\f(8,35)eq\f(1,70)(2)令Y表示此员工的月工资,则Y的所有可能取值为2100,2800,3500,则P(Y=3500)=P(X=4)=eq\f(1,70),P(Y=2800)=P(X=3)=eq\f(8,35),P(Y=2100)=P(X≤2)=eq\f(53,70),E(Y)=3500×eq\f(1,70)+2800×eq\f(16,70)+2100×eq\f(53,70)=2280,所以此员工月工资的期望为2280元.考向三由独立事件同时发生的概率求离散型随机变量的分布列【例3】►(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为eq\f(2,3),得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=eq\f(1,12),则随机变量X的数学期望E(X)=________。[审题视点]分别求出随机变量X取每一个值的概率,然后求其期望.解析由已知条件P(X=0)=eq\f(1,12)即(1-P)2×eq\f(1,3)=eq\f(1,12),解得P=eq\f(1,2),随机变量X的取值分别为0,1,2,3。P(X=0)=eq\f(1,12),P(X=1)=eq\f(2,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))2+2×eq\f(1,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2=eq\f(1,3),P(X=2)=2×eq\f(2,3)×eq\f(1,2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(2,3)))×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2=eq\f(5,12),P(X=3)=eq\f(2,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2=eq\f(1,6)。因此随机变量X的分布列为X0123Peq\f(1,12)eq\f(1,3)eq\f(5,12)eq\f(1,6)E(X)=0×eq\f(1,12)+1×eq\f(1,3)+2×eq\f(5,12)+3×eq\f(1,6)=eq\f(5,3).答案eq\f(5,3)本题考查了相互独立事件同时发生的概率求法以及分布列,期望的相关知识,公式应用,计算准确是解题的关键.【训练3】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是eq\f(1,2)。同样也假定D受A、B和C感染的概率都是eq\f(1,3).在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).解随机变量X的分布列是X123Peq\f(1,3)eq\f(1,2)eq\f(1,6)X的均值E(X)=1×eq\f(1,3)+2×eq\f(1,2)+3×eq\f(1,6)=eq\f(11,6)。附:X的分布列的一种求法共有如下6种不同的可能情形,每种情形发生的概率都是eq\f(1,6):①②③④⑤⑥A-B-C-D在情形①和②之下,A直接感染了一个人;在情形③、④、⑤之下,A直接感染了两个人;在情形⑥之下,A直接感染了三个人.规范解答22-—求离散型随机变量的分布列【问题研究】离散型随机变量的分布列问题是新课标教材概率统计中的一个重要的内容,从近几年新课标区高考试题来看,每年都有考查,而且它是进行概率计算,期望与方差计算的重要依据。【解决方案】1用好概率分布列的性质:在随机变量的分布列中随机变量各个可能值对应的概率均符合概率的一般性性质,并且所有的概率之和等于1.2掌握好几个特殊分布的分布列:如两点分布、超几何分布、二项分布等.【示例】►(本题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,记ξ=|x-2|+|y-x|。(1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;(2)求随机变量ξ的分布列.(1)根据x,y的取值,随机变量ξ的最大值为3,当ξ=3时,只能x=1,y=3或x=3,y=1;(2)根据x,y的取值,ξ的所有取值为0,1,2,3,列举计数计算其相应的概率值即可.[解答示范](1)∵x,y可能的取值为1,2,3,∴|x-2|≤1,|y-x|≤2,∴ξ≤3,且当x=1,y=3或x=3,y=1时,ξ=3.因此,随机变量ξ的最大值为3.(3分)∵有放回抽两张卡片的所有情况有3×3=9种,∴P(ξ=3)=eq\f(2,9).故随机变量ξ的最大值为3,事件“ξ取得最大值”的概率为eq\f(2,9)。(6分)(2)ξ的所有取值为0,1,2,3。∵ξ=0时,只有x=2,y=2这一种情况,ξ=1时,有x=1,y=1或x=2,y=1或x=2,y=3或x=3,y=3四种情况,ξ=2时,有x=1,y=2或x=3,y=2两种情况.ξ=3时,有x=1,y=3或x=3,y=1两种情况.∴P(ξ=0)=eq\f(1,9),P(ξ=1)=eq\f(4,9),P(ξ=2)=eq\f(2,9),P(ξ=3)=eq\f(2,9)。(10分)则随机变量ξ的分布列为:ξ0123Peq\f(1,9)eq\f(4,9)eq\f(2,9)eq\f(2,9)(12分)解决随机变量分布列问题的关键是正确求出随机变量可以取哪些值以及取各个值对应的概率,只有正确地理解随机变量取值的意义才能解决这个关键问题,理解随机变量取值的意义是化解这类问题难点的必要前提.【试一试】某射手进行射击训练,假设每次射击击中目标的概率为eq\f(3,5),且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论