




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西昭平县2024届数学九上期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A. B. C. D.2.在比例尺为1:100000的城市交通图上,某道路的长为3厘米,则这条道路的实际距离为()千米.A.3 B.30 C.3000 D.0.33.下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.4.如图,的半径为3,是的弦,直径,,则的长为()A. B. C. D.5.在Rt△ABC中,∠C=900,AC=4,AB=5,则sinB的值是()A. B. C. D.6.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.设,,是抛物线上的三点,则,,的大小关系为()A. B. C. D.8.当取何值时,反比例函数的图象的一个分支上满足随的增大而增大()A. B. C. D.9.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=35°,那么∠BAD等于()A.35° B.45° C.55° D.65°10.如图,已知正方形ABCD的边长为2,点E、F分别为AB、BC边的中点,连接AF、DE相交于点M,则∠CDM等于A. B. C. D.11.如果,那么下列比例式中正确的是()A. B. C. D.12.小明、小亮、小梅、小花四人共同探究函数的值的情况,他们作了如下分工:小明负责找函数值为1时的值,小亮负责找函数值为0时的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是()A.小明认为只有当时,函数值为1;B.小亮认为找不到实数,使函数值为0;C.小花发现当取大于2的实数时,函数值随的增大而增大,因此认为没有最大值;D.小梅发现函数值随的变化而变化,因此认为没有最小值二、填空题(每题4分,共24分)13.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.14.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是15.方程(x+5)2=4的两个根分别为_____.16.分解因式:x3﹣4x2﹣12x=_____.17.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.18.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG.则下列结论:①∠FCG=∠CDG;②△CEF的面积等于;③FC平分∠BFG;④BE2+DF2=EF2;其中正确的结论是_____.(填写所有正确结论的序号)三、解答题(共78分)19.(8分)如图,直线AC与⊙O相切于点A,点B为⊙O上一点,且OC⊥OB于点O,连接AB交OC于点D.(1)求证:AC=CD;(2)若AC=3,OB=4,求OD的长度.20.(8分)解方程:-2(x+1)=321.(8分)某校综合实践小组要对一幢建筑物的高度进行测量.如图,该小组在一斜坡坡脚处测得该建筑物顶端的仰角为,沿斜坡向上走到达处,(即)测得该建筑物顶端的仰角为.已知斜坡的坡度,请你计算建筑物的高度(即的长,结果保留根号).22.(10分)已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,(1)求证:△ABC≌△EDF;(2)当∠CHD=120°,求∠HBD的度数.23.(10分)如图1,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,当△EPC的面积为3cm2时,求t的值;(3)在运动过程中,当t取何值时,△EPQ与△ADC相似.24.(10分)在下列网格图中,每个小正方形的边长均为1个单位.Rt△ABC中,∠C=90°,AC=3,BC=4,△ABC以A为旋转中心,沿顺时针方向旋转90°后得到△AB1C1;(1)作出△AB1C1;(不写画法)(2)求点C转过的路径长;(3)求边AB扫过的面积.25.(12分)学生会组织周末爱心义卖活动,义卖所得利润将全部捐献给希望工程,活动选在一块长米、宽米的矩形空地上.如图,空地被划分出个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为平方米,小路的宽应为多少米?26.如图,中,,是的中点,于.(1)求证:;(2)当时,求的度数.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据从上面看到的图形即为俯视图进一步分析判断即可.【题目详解】从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选:B.【题目点拨】本题主要考查了三视图的判断,熟练掌握相关方法是解题关键.2、A【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【题目详解】解:设这条道路的实际长度为x,则=,
解得x=300000cm=3km.
∴这条道路的实际长度为3km.
故选A.【题目点拨】本题考查成比例线段问题,能够根据比例尺正确进行计算,注意单位的转换3、D【解题分析】根据轴对称图形与中心对称图形的概念,对各选项分析判断即可得解.【题目详解】A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选:D.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【分析】连接OC,利用垂径定理以及圆心角与圆周角的关系求出;再利用弧长公式即可求出的长.【题目详解】解:连接OC(同弧所对的圆心角是圆周角的2倍)∵直径∴=(垂径定理)∴故选C【题目点拨】本题考查了垂径定理、圆心角与圆周角以及利用弧长公式求弧长,熟练掌握相关定理和公式是解答本题的关键.5、D【解题分析】试题分析:正弦的定义:正弦由题意得,故选D.考点:锐角三角函数的定义点评:本题属于基础应用题,只需学生熟练掌握正弦的定义,即可完成.6、B【解题分析】试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.考点:1.中心对称图形;2.轴对称图形.7、A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【题目详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴.故选A.【题目点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8、B【解题分析】根据反比例函数的性质可得:∵的一个分支上y随x的增大而增大,∴a-3<0,
∴a<3.故选B.9、C【分析】根据题意可知、,通过与互余即可求出的值.【题目详解】解:∵∴∵是的直径∴∴故选:C【题目点拨】本题考查了圆周角定理,同弧所对的圆周角相等、并且等于它所对的圆心角的一半,也考查了直径所对的圆周角为90度.10、A【分析】根据正方形的特点可知∠CDM=∠DEA,利用勾股定理求出DE,根据余弦的定义即可求解.【题目详解】∵CD∥AB,∴∠CDM=∠DEA,∵E是AB中点,∴AE=AB=1∴DE=∴∠CDM=∠DEA==故选A.【题目点拨】此题主要考查余弦的求解,解题的关键是熟知余弦的定义.11、C【分析】根据比例的性质,若,则判断即可.【题目详解】解:故选:C.【题目点拨】本题主要考查了比例的性质,灵活的利用比例的性质进行比例变形是解题的关键.12、D【分析】根据二次函数的最值及图象上点的坐标特点回答即可.【题目详解】因为该抛物线的顶点是,所以正确;根据二次函数的顶点坐标,知它的最小值是1,所以正确;根据图象,知对称轴的右侧,即时,y随x的增大而增大,所以正确;因为二次项系数1>0,有最小值,所以错误;故选:D.【题目点拨】本题主要考查了二次函数图象与最值问题,准确分析是解题的关键.二、填空题(每题4分,共24分)13、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.14、.【解题分析】试题分析:能构成三角形的情况为:3,4,5;3,4,6;3,5,6;4,5,6这四种情况.直角三角形只有3,4,5一种情况.故能够成直角三角形的概率是.故答案为.考点:1.勾股定理的逆定理;2.概率公式.15、x1=﹣7,x2=﹣3【分析】直接开平方法解一元二次方程即可.【题目详解】解:∵(x+5)2=4,∴x+5=±2,∴x=﹣3或x=﹣7,故答案为:x1=﹣7,x2=﹣3【题目点拨】本题主要考查一元二次方程的解法中的直接开平方法,要求理解直接开平方法的适用类型,以及能够针对不同类型的题选用合适的方法进行计算.16、x(x+2)(x-6).【分析】因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.首先提取公因式x,然后利用十字相乘法求解,【题目详解】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).【题目点拨】本题考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正确计算是本题的解题关键.17、(0,0)【解题分析】根据坐标的平移规律解答即可.【题目详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【题目点拨】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18、①③④【分析】由正方形的性质可得AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,由旋转的性质可得∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,由SAS可证△ECF≌△GCF,可得EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,即可求解.【题目详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,∴∠ECF=∠ABD=45°,∴∠BCE+∠FCD=45°,∵将△BCE绕点C旋转一定角度后,得到△DCG,∴∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,∴∠FCG=∠ECF=45°,∴∠FCG=∠CDG=45°,故①正确,∵EC=CG,∠FCG=∠ECF,FC=FC,∴△ECF≌△GCF(SAS)∴EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,∴CF平分∠BFG,故③正确,∵∠BDG=∠BDC+∠CDG=90°,∴DG2+DF2=FG2,∴BE2+DF2=EF2,故④正确,∵DF+DG>FG,∴BE+DF>EF,∴S△CEF<S△BEC+S△DFC,∴△CEF的面积<S△BCD=,故②错误;故答案为:①③④【题目点拨】本题是一道关于旋转的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,考查了旋转的性质、正方形的性质、全等三角形的判定及性质等知识点.三、解答题(共78分)19、(1)见解析;(1)1【分析】(1)由AC是⊙O的切线,得OA⊥AC,结合OD⊥OB,OA=OB,得∠CDA=∠DAC,进而得到结论;(1)利用勾股定理求出OC,即可解决问题.【题目详解】(1)∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,即:∠OAD+∠DAC=90°,∵OD⊥OB,∴∠DOB=90°,∴∠BDO+∠B=90°,∵OA=OB,∴∠OAD=∠B,∴∠BDO=∠DAC,∵∠BDO=∠CDA,∴∠CDA=∠DAC,∴CD=CA.(1)∵在Rt△ACO中,OC==5,∵CA=CD=3,∴OD=OC﹣CD=1.【题目点拨】本题主要考查圆的基本性质,掌握切线的基本性质,是解题的关键.20、【分析】先将-2(x+1)=3化成-2(x+1)-3=0,再将x+1当作一个整体运用因式分解法求出x+1,最后求出x.【题目详解】解:∵-2(x+1)=3化成-2(x+1)-3=0∴(x+1-3)(x+1+1)=0∴x+1-3=0或x+1+1=0∴【题目点拨】本题考查了一元二次方程的解法,掌握整体换元法是解答本题的关键.21、建筑物的高度为.【分析】过点作,根据坡度的定义求出AB,BD,AD,再利用三角函数的定义列出方程求解.【题目详解】解:过点作,垂足为.过点作,垂足为.∵,∴,∴四边形是矩形,∴,,.∵,∴,∴设,,∴,∴,∴,.根据题意,,,在中,设,∵,∴,∴,∴,在中,∵,.又∵,∴,解得,∴.答:建筑物的高度为.【题目点拨】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.22、(1)详见解析;(2)60°.【分析】(1)根据SAS即可证明:△ABC≌△EDF;(2)由(1)可知∠HDB=∠HBD,再利用三角形的外角关系即可求出∠HBD的度数.【题目详解】(1)∵AD=BE,∴AB=ED,在△ABC和△EDF中,,∴△ABC≌△EDF(SAS);(2)∵△ABC≌△EDF,∴∠HDB=∠HBD,∵∠CHD=∠HDB+∠HBD=120°,∴∠HBD=60°.【题目点拨】本题考查了全等三角形的判定与性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.23、(1)详见解析;(2)2秒;(3)2秒或秒或秒.【分析】(1)由题意通过计算发现EQ=FQ=6,由此即可证明;(2)根据题意利用三角形的面积建立方程即可得出结论;(3)由题意分点E在Q的左侧以及点E在Q的右侧这两种情况,分别进行分析即可得出结论.【题目详解】解:(1)证明:若运动时间t=秒,则BE=2×=(cm),DF=(cm),∵四边形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四边形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB==,在Rt△CPQ中,tan∠ACB===,∴PQ=t,∵△EPC的面积为3cm2,∴S△EPC=CE×PQ=×(8﹣2t)×t=3,∴t=2秒,即t的值为2秒;(3)解:分两种情况:Ⅰ.如图1中,点E在Q的左侧.①∠PEQ=∠CAD时,△EQP∽△ADC,∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∵△EQP∽△ADC,∴∠CAD=∠QEP,∴∠ACB=∠QEP,∴EQ=CQ,∴CE=2CQ,由(1)知,CQ=t,CE=8-2t,∴8-2t=2t,∴t=2秒;②∠PEQ=∠ACD时,△EPQ∽△CAD,∴,∵FQ⊥BC,∴FQ∥AB,∴△CPQ∽△CAB,∴,即,解得:,∴,解得:;Ⅱ.如图2中,点E在Q的右侧.∵0<t<4,∴点E不能与点C重合,∴只存在△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论