版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西北部湾四市同城联考2024届九年级数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,必然事件是()A.抛一枚硬币,正面朝上B.打开电视频道,正在播放《今日视线》C.射击运动员射击一次,命中10环D.地球绕着太阳转2.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>- B.k>-且 C.k<- D.k-且3.如图,是正方形与正六边形的外接圆.则正方形与正六边形的周长之比为()A. B. C. D.4.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x-2x+d=0有实数根,则点P()A.在⊙O的内部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O内部5.将一副学生常用的三角板如下图摆放在一起,组成一个四边形,连接,则的值为()A. B. C. D.6.某学校要种植一块面积为200m2的长方形草坪,要求两边长均不小于10m,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.7.若有意义,则x的取值范围是A.且 B. C. D.8.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)181186181186方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁9.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.1210.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%11.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米12.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24 B.33 C.56 D.42二、填空题(每题4分,共24分)13.x台拖拉机,每天工作x小时,x天耕地x亩,则y台拖拉机,每天工作y小时,y天耕____亩.14.若圆锥的母线长为,底面半径为,则圆锥的侧面展开图的圆心角应为_________________度.15.如图所示的两个四边形相似,则的度数是.16.如图,已知等边,顶点在双曲线上,点的坐标为(2,0).过作,交双曲线于点,过作交轴于,得到第二个等边.过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,…,则点的坐标为______,的坐标为______.17.若函数为关于的二次函数,则的值为__________.18.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.三、解答题(共78分)19.(8分)如图,正方形ABCD,△ABE是等边三角形,M是正方形ABCD对角线AC(不含点A)上任意一点,将线段AM绕点A逆时针旋转60°得到AN,连接EN、DM.求证:EN=DM.20.(8分)小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.21.(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?22.(10分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?23.(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.24.(10分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).25.(12分)如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.26.已知,如图,点E在平行四边形ABCD的边CD上,且,设,.(1)用、表示;(直接写出答案)(2)设,在答题卷中所给的图上画出的结果.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据事件发生的可能性大小及必然事件的定义即可作出判断.【题目详解】解:A、抛一枚硬币,正面朝上是随机事件;B、打开电视频道,正在播放《今日视线》是随机事件;C、射击运动员射击一次,命中10环是随机事件;D、地球绕着太阳转是必然事件;故选:D.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定会发生的事件.不可能事件是指在一定条件下,一定不会发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【题目详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故选B.【题目点拨】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.3、A【解题分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出周长之间的关系;【题目详解】设此圆的半径为R,
则它的内接正方形的边长为,
它的内接正六边形的边长为R,
内接正方形和外切正六边形的边长比为R:R=:1.正方形与正六边形的周长之比=:6=
故答案选:A;【题目点拨】考查了正多边形和圆,解决圆的相关问题一定要结合图形,掌握基本的图形变换.找出内接正方形与内接正六边形的边长关系,是解决问题的关键.4、D【分析】先根据条件x
2
-2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【题目详解】解:∵关于x的方程x
2
-2x+d=0有实根,∴根的判别式△=(-2)
2
-4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【题目点拨】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.5、B【分析】设AC、BD交于点E,过点C作CF⊥BD于点F,过点E作EG⊥CD于点G,则CF∥AB,△CDF和△DEG都是等腰直角三角形,设AB=2,则易求出CF=,由△CEF∽△AEB,可得,于是设EF=,则,然后利用等腰直角三角形的性质可依次用x的代数式表示出CF、CD、DE、DG、EG的长,进而可得CG的长,然后利用正切的定义计算即得答案.【题目详解】解:设AC、BD交于点E,过点C作CF⊥BD于点F,过点E作EG⊥CD于点G,则CF∥AB,△CDF和△DEG都是等腰直角三角形,∴△CEF∽△AEB,设AB=2,∵∠ADB=30°,∴BD=,∵∠BDC=∠CBD=45°,CF⊥BD,∴CF=DF=BF==,∴,设EF=,则,∴,∴,,∴,∴,∴.故选:B.【题目点拨】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.6、C【解题分析】易知y是x的反比例函数,再根据边长的取值范围即可解题.【题目详解】∵草坪面积为200m2,∴x、y存在关系y=200x∵两边长均不小于10m,∴x≥10、y≥10,则x≤20,故选:C.【题目点拨】本题考查反比例函数的应用,根据反比例函数解析式确定y的取值范围,即可求得x的取值范围,熟练掌握实际问题的反比例函数图象是解题的关键.7、A【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【题目详解】由题意可知:,解得:且,故选A.【题目点拨】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.8、B【分析】根据平均数与方差的意义解答即可.【题目详解】解:,乙与丁二选一,又,选择乙.【题目点拨】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键.9、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【题目详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.10、C【解题分析】分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选C.点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11、C【解题分析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.12、D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【题目详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【题目点拨】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.二、填空题(每题4分,共24分)13、【分析】先求出一台拖拉机1小时的工作效率,然后求y台拖拉机在y天,每天工作y小时的工作量.【题目详解】一台拖拉机1小时的工作效率为:∴y台拖拉机,y天,每天y小时的工作量=故答案为:【题目点拨】本题考查工程问题,解题关键是求解出一台拖拉机1小时的工作效率.14、【分析】根据圆锥侧面展开图的弧长等于圆锥底面圆的周长列式计算,弧长公式为,圆周长公式为.【题目详解】解:圆锥的侧面展开图的圆心角度数为n°,根据题意得,,∴n=144∴圆锥的侧面展开图的圆心角度数为144°.故答案为:144°.【题目点拨】本题考查圆锥的侧面展开图公式;用到的知识点为,圆锥的侧面展开图的弧长等于圆锥的底面圆周长.记准公式及有空间想象力是解答此题的关键.15、.【解题分析】由两个四边形相似,根据相似多边形的对应角相等,即可求得∠A的度数,又由四边形的内角和等于360°,即可求得∠α的度数.【题目详解】解:∵四边形ABCD∽四边形A′B′C′D′,
∴∠A=∠A′=138°,
∵∠A+∠B+∠C+∠D=360°,
∴∠α=360°-∠A-∠B-∠C=360°-60°-138°-75°==87°.
故答案为87°.【题目点拨】此题考查了相似多边形的性质.此题比较简单,解题的关键是掌握相似多边形的对应角相等定理的应用.16、(2,0),(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点Bn的坐标.【题目详解】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵点A2在双曲线上,
∴(2+a)•a=,
解得a=-1,或a=--1(舍去),
∴OB2=OB1+2B1C=2+2-2=2,
∴点B2的坐标为(2,0);
作A3D⊥x轴于点D,设B2D=b,则A3D=b,
OD=OB2+B2D=2+b,A2(2+b,b).
∵点A3在双曲线y=(x>0)上,
∴(2+b)•b=,
解得b=-+,或b=--(舍去),
∴OB3=OB2+2B2D=2-2+2=2,
∴点B3的坐标为(2,0);
同理可得点B4的坐标为(2,0)即(4,0);
以此类推…,
∴点Bn的坐标为(2,0),
故答案为(2,0),(2,0).【题目点拨】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键.17、2【分析】根据二次函数的定义,列出关于m的方程和不等式,即可求解.【题目详解】∵函数为关于的二次函数,∴且,∴m=2.故答案是:2.【题目点拨】本题主要考查二次函数的定义,列出关于m的方程和不等式,是解题的关键.18、7【解题分析】试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.三、解答题(共78分)19、证明见解析【分析】利用等边三角形的性质以及旋转的性质,即可判定△EAN≌△DAM(SAS),依据全等三角形的对应边相等,即可得到EN=DM.【题目详解】证明:∵△ABE是等边三角形,∴∠BAE=60°,BA=EA,由旋转可得,∠MAN=60°,AM=AN,∴∠BAE=∠MAN,∴∠EAN=∠BAM,∵四边形ABCD是正方形,∴BA=DA,∠BAM=∠DAM=45°,∴EA=DA,∠EAN=∠DAM,在△EAN和△DAM中,EA=DA.∠EAN=∠DAM,AN=AM,∴△EAN≌△DAM(SAS),∴EN=DM.【题目点拨】本题主要考查了旋转的性质以及全等三角形的判定与性质,解决本题的关键是要熟练掌握旋转图形的性质和全等三角形的判定和性质.20、这个游戏对双方不公平,理由见解析.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【题目详解】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小亮胜的概率为,∵≠,∴这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析.【题目点拨】本题考查了树状图法求概率,判断游戏的公平性.21、(1)y=﹣5x2+110x+1200;(2)售价定为189元,利润最大1805元【解题分析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【题目详解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;【题目点拨】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.22、(1)∴.(2)m=2或3.【解题分析】(1)利用一元二次方程求根根式解方程.(2)利用(1)中x的值来确定m的值.【题目详解】解:(1)根据题意得m≠1,△=(–2m)2-4(m-1)(m+1)=4,∴.(2)由(1)知,∵方程的两个根都是正整数,∴是正整数.∴m-1=1或2..∴m=2或3.考点:公式法解一元二次方程,一元二次方程的解.23、(1)60,90;(2)见解析;(3)300人【解题分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【题目详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【题目点拨】本题考查了条形统计图与扇形统计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络内生安全机制-洞察分析
- 网络协议栈优化-洞察分析
- 异构类名处理算法-洞察分析
- 异构数据k-匿名模型-洞察分析
- 工程师如何进行中长期职业规划及计划
- 咨询类公司规章制度范文
- 2024-2025学年四川省绵阳市高一上学期11月期中考试物理试题(解析版)
- 水资源监测大数据分析-洞察分析
- 2024-2025学年辽宁省朝阳市重点中学高一上学期11月期中联考物理试题(解析版)
- 2023年-2024年新入职员工安全教育培训试题【网校专用】
- 医院感染监测清单
- Q∕SY 05592-2019 油气管道管体修复技术规范
- 《1.我又长大了一岁》教学课件∣泰山版
- JIS G3141-2021 冷轧钢板及钢带标准
- qes三体系审核培训ppt课件
- 篮球校本课程教材
- 小学数学校本教材(共51页)
- 遗传群体文献解读集
- 工艺装备环保性与安全性的设计要点
- [玻璃幕墙施工方案]隐框玻璃幕墙施工方案
- 国家开放大学电大本科《管理案例分析》2023-2024期末试题及答案(试卷代号:1304)
评论
0/150
提交评论