




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省玉溪市江川县数学九上期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.抛物线与坐标轴的交点个数是()A.3 B.2 C.1 D.02.张华同学的身高为米,某一时刻他在阳光下的影长为米,同时与他邻近的一棵树的影长为米,则这棵树的高为()A.米 B.米 C.米 D.米3.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20° B.40° C.70° D.80°4.如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是()A. B. C. D.5.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0 B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥6.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=().A.-2 B.2 C.-4 D.47.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是()A.BM>DN B.BM<DN C.BM=DN D.无法确定9.如图,已知等边的边长为,以为直径的圆交于点,以为圆心,为半径作圆,是上一动点,是的中点,当最大时,的长为()A. B. C. D.10.如图,在一个周长为10m的长方形窗户上钉上一块宽为1m的长方形遮阳布,使透光部分正好是一个正方形,则钉好后透光部分的面积为()A.9m2 B.25m2 C.16m2 D.4m2二、填空题(每小题3分,共24分)11.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是_____.12.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______;若将绕点顺时针旋转,则顶点所经过的路径长为__________.13.小丽生日那天要照全家福,她和爸爸、妈妈随意排成一排,则小丽站在中间的概率是________.14.如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果,,那么线段CE的长是______.15.把抛物线的顶点E先向左平移3个单位,再向上平移4个单位后刚好落在同一平面直角坐标系的双曲线上,那么=__________16.在如图所示的网格中,每个小正方形的边长都为2,若以小正形的顶点为圆心,4为半径作一个扇形围成一个圆锥,则所围成的圆锥的底面圆的半径为___________.17.已知二次函数的图像开口向上,则的值为________.18.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=_____度.三、解答题(共66分)19.(10分)如图,在矩形中,分别从同时出发,分别沿边移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.己知移动段时间后,若,.当为何值时,以为顶点的四边形是平行四边形?20.(6分)某化肥厂2019年生产氮肥4000吨,现准备通过改进技术提升生产效率,计划到2021年生产氮肥4840吨.现技术攻关小组按要求给出甲、乙两种技术改进方案,其中运用甲方案能使每年产量增长的百分率相同,运用乙方案能使每年增长的产量相同.问运用哪一种方案能使2020年氮肥的产量更高?高多少?21.(6分)如图,已知在矩形ABCD中,AB=6,BC=8,点P从点C出发以每秒1个单位长度的速度沿着CD在C点到D点间运动(当达D点后则停止运动),同时点Q从点D出发以每秒2个单位长度的速度沿着DA在D点到A点间运动(当达到A点后则停止运动).设运动时间为t秒,则按下列要求解决有关的时间t.(1)△PQD的面积为5时,求出相应的时间t;(2)△PQD与△ABC可否相似,如能相似求出相应的时间t,如不能说明理由;(3)△PQD的面积可否为10,说明理由.22.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求PB的长.23.(8分)光明中学以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨举办首届《诗词大会》,九年级2班的马小梅晋级总决赛,比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.第一环节:横扫千军、你说我猜、初级飞花令,(分别用)表示;第二环节:出口成诗、飞花令、超级飞花令、诗词接龙(分别用表示).(1)请用画树状图或列表的方法表示马小梅参加总决赛抽取题目的所有可能结果;(2)求马小梅参加总决赛抽取题目都是飞花令题目(初级飞花令、飞花令、超级飞花令)的概率.24.(8分)已知关于x的一元二次方程x2+x+m﹣1=1.(1)当m=1时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.25.(10分)如图,是的弦,于,交于,若,求的半径.26.(10分)如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长.
参考答案一、选择题(每小题3分,共30分)1、A【题目详解】解:∵抛物线解析式,令,解得:,∴抛物线与轴的交点为(0,4),令,得到,∴抛物线与轴的交点分别为(,0),(1,0).综上,抛物线与坐标轴的交点个数为1.故选A.【题目点拨】本题考查抛物线与轴的交点,解一元一次、二次方程.2、A【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体、影子、经过物体顶部的太阳光线三者构成的两个直角三角形相似.【题目详解】解:据相同时刻的物高与影长成比例,
设这棵树的高度为xm,
则可列比例为,,解得,x=3.1.
故选:A.【题目点拨】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.3、C【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【题目详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=(180°﹣40°)=70°.故选C.【题目点拨】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.4、D【解题分析】试题分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正确;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D错误.故选D.点睛:本题考查了相似三角形的判定与性质.注意平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形对应边成比例.注意数形结合思想的应用.5、D【分析】根据平面向量的性质一一判断即可.【题目详解】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.【题目点拨】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.6、D【分析】由反比例函数的图象过第一象限可得出,,再由反比例函数系数的几何意义即可得出,,根据的面积为再结合三角形之间的关系即可得出结论.【题目详解】∵反比例函数及的图象均在第一象限内,
∴,,
∵⊥轴,
∴,,
∴,
解得:.
故选:D.【题目点拨】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是反比例函数系数k的几何意义得出.7、A【解题分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、C【解题分析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.9、B【分析】点E在以F为圆心的圆上运动,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得,根据勾股定理即可求得结论.【题目详解】点D在C上运动时,点E在以F为圆心的圆上运动,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴,∴F是BC的中点,∴E为BD的中点,∴EF为△BCD的中位线,∴,∴,,,故,故选B.【题目点拨】本题考查了圆的动点问题,掌握等腰三角形的性质、圆周角定理、中位线定理、平行线的性质和勾股定理是解题的关键.10、D【解题分析】根据矩形的周长=(长+宽)×1,正方形的面积=边长×边长,列出方程求解即可.【题目详解】解:若设正方形的边长为am,
则有1a+1(a+1)=10,
解得a=1,故正方形的面积为4m1,即透光面积为4m1.
故选D.【题目点拨】此题考查了一元一次方程的应用,主要考查了长方形的周长及正方形面积的求法,属于基础题,难度一般.二、填空题(每小题3分,共24分)11、【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【题目详解】解:点M,N分别是AB,BC的中点,,当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,,,,,故答案为:.【题目点拨】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN的值最大问题转化为AC的最大值问题,难度不大.12、3.5;【分析】(1)利用△ABC所在的正方形的面积减去四周三个直角三角形的面积,列式计算即可得解;(2)根据勾股定理列式求出AC,然后利用弧长公式列式计算即可得解.【题目详解】(1)△ABC的面积=3×3−×2×3−×1×3−×1×2,=9−3−1.5-1=3.5;(2)由勾股定理得,AC=,所以,点A所经过的路径长为故答案为:3.5;.【题目点拨】本题考查了利用旋转的性质,弧长的计算,熟练掌握网格结构,求出AC的长是解题的关键.13、【分析】先利用树状图展示所有6种等可能的结果数,再找出小丽恰好排在中间的结果数,然后根据概率公式求解.【题目详解】解:画树状图为:共有种等可能的结果数,其中小丽站在中间的结果数为,所以小丽站在中间的概率.故答案为:.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14、【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答..【题目详解】解:延长AG交BC于D点,∵中线BF、CE交于点G,∵△ABC的两条中线AD、CE交于点G,
∴点G是△ABC的重心,D是BC的中点,
∴AG=AD,CG=CE,BG=BF,∵,,∴,.∵CE⊥BF,即∠BGC=90°,∴BC=2DG=5,在Rt△BGC中,CG=,∴,故答案为:.【题目点拨】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.理解三角形重心的性质是解题的关键.15、﹣1【分析】根据题意得出顶点E坐标,利用平移的规律得出移动后的点的坐标,进而代入反比例函数即可求出k的值.【题目详解】解:由题意可知抛物线的顶点E坐标为(1,-2),把点E(1,-2)先向左平移3个单位,再向上平移1个单位所得对应点的坐标为(-2,2),∵点(-2,2)在双曲线上,∴k=-2×2=-1.故答案为:-1.【题目点拨】本题考查二次函数图象与几何变换和二次函数的性质以及待定系数法求反比例函数的解析式,根据题意求得平移后的顶点坐标是解题的关键.16、【分析】先根据直角三角形边长关系得出,再分别计算此扇形的弧长和侧面积后即可得到结论.【题目详解】解:如图,,,.,,的长度,设所围成的圆锥的底面圆的半径为,,,故答案为:.【题目点拨】本题考查了圆锥的计算及弧长的计算的知识,解题的关键是能够从图中了解到扇形的弧长和扇形的半径并利用扇形的有关计算公式进行计算,难度不大.17、2【分析】根据题意:的最高次数为2,由开口向上知二次项系数大于0,据此求解即可.【题目详解】∵是二次函数,
∴,即
解得:,
又∵图象的开口向上,
∴,
∴.故答案为:.【题目点拨】本题综合考查了二次函数的性质及定义,要注意二次项系数的取值范围.18、1【分析】如图,连接OA,根据等腰三角形的性质得到∠OAC=∠C=20°,根据等腰三角形的性质解答即可.【题目详解】如图,连接OA,∵OA=OC,∴∠OAC=∠C=20°,∴∠OAB=∠OAC+∠BAC=20°+40°=1°,∵OA=OB,∴∠B=∠OAB=1°,故答案为1.【题目点拨】本题考查了圆的性质的应用,熟练掌握圆的半径相等、等腰三角形的性质是解题的关键.三、解答题(共66分)19、2或【分析】根据平行四边形的性质,得,分两种情况:①当点在点的左侧时,②当点在点的右侧时,分别列出关于x的方程,即可求解.【题目详解】∵在矩形中,AD∥BC,∴以为顶点的四边形是平行四边形时,.①当点在点的左侧时,由,得:,解得:(舍去),;②当点在点的右侧时,由,得:,解得:(舍去);综上所述:当=2或时,以为顶点的四边形是平行四边形.【题目点拨】本题主要考查一元二次方程与平行四边形的性质综合,根据等量关系,列出方程,时是解题的关键.20、乙方案能使2020年氮肥的产量更高,高20吨【分析】设甲方案的平均增长率为,根据题意列出方程,求出x的值,即可求出甲方案2020年产量,再根据题意求出乙方案2020年产量,比较即可得出结论.【题目详解】解:设甲方案的平均增长率为,依题意得.解得,,(不合题意,舍去).甲方案2020年产量:,乙方案2020年产量:.,(吨).答:乙方案能使2020年氮肥的产量更高,高20吨.【题目点拨】此题考查的是一元二次方程的应用,掌握增长率问题的公式是解决此题的关键.21、(1)t=1;(2)t=2.4或;(3)△PQD的面积不能为1,理由见解析.【分析】(1)△PQD的两直角边分别用含t的代数式表示,由△PQD的面积为5得到关于t的方程,由此可解得t的值;(2)设△PQD与相似△ABC,由图形形状考虑可知有两种可能性,对两种可能性分别给予讨论可以求得答案;(3)与(1)类似,可以用含t的表达式表示△PQD的面积,令其等于1,由所得方程解的情况可以作出判断.【题目详解】因为四边形ABCD是矩形,所以AB=CD=6,BC=AD=8,(1)S△PQD=解得:t1=1t2=5(舍去)(2)①当时△PDQ~△ABC即得t=2.4②当时△PQD̰~△CBA即得;(3)△PQD的面积为1时,,此方程无实数根,即△PQD的面积不能为1.【题目点拨】本题综合考查三角形相似、面积计算与动点几何问题,利用方程的思想方法解题是关键所在.22、(1)证明见解析(2)PB=3【分析】(1)通过证明△PAO≌△PBO可得结论;(2)根据tan∠BAD=,且OC=4,可求出AC=6,再证得△PAC∽△AOC,最后利用相似三角形的性质以及勾股定理求得答案.【题目详解】解:(1)连结OB,则OA=OB,如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO,∵PB为⊙O的切线,B为切点,∴PB⊥OB,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,∴AC=6,则BC=6,∴,在Rt△APO中,AC⊥OP,易得△PAC∽△AOC,∴,即AC2=OC•PC,∴PC=9,∴OP=PC+OC=13,在Rt△PBC中,由勾股定理,得PB=.【题目点拨】此题考查了切线的判定与性质、勾股定理、全等三角形的判定与性质、锐角三角函数、相似三角形的判定和性质,考查的知识点较多,关键是熟练掌握一些基本性质和定理,在解答综合题目时能灵活运用.23、(1)详见解析;(2)【分析】(1)根据题意画树状图写出所有可能的结果即可;(2)找到抽取题目都是飞花令题目的情况数,再除以总的情况数即可得出概率.【题目详解】解:(1)画树状图如下共有12种可能的结果:T1S1,T1S2,T1S3,T1S1,T2S1,T2S2,T2S3,T2S1,T3S1,T3S2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初级社工发展理论试题及答案
- 云平台复习测试卷含答案
- 人体解剖学与组织胚胎学练习卷附答案
- 诉衷情测试题及答案
- 2025年自然科学研究与试验发展服务项目申请报告模板
- 文员知识考试试题及答案
- 中级教育学试题及答案
- 信息管理详解试题及答案
- 建筑设备试题及答案
- 社会工作者与政府合作的有效性试题及答案
- 《聚落与环境》名师课件
- 《城轨通信信号基础设备应》课件-FTGS轨道电路
- 交管12123学法减分复习题库500道【满分必刷】
- MOOC 数字电子技术基础-华中科技大学 中国大学慕课答案
- NY-T 3213-2023 植保无人驾驶航空器 质量评价技术规范
- 2024年大学生心理健康教育考试题库及答案(含各题型)
- 《多边形的面积》课件
- 高压氧治疗注意事项及操作规范指南
- 吴川市中医院新增数字减影装置(DSA)项目环境影响报告表
- 石材幕墙施工组织设计背栓SE挂件
- 《隧道工程》复习考试题库(带答案)
评论
0/150
提交评论