




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽屉原理与排列组合.抽屉原理把4只苹果放到3个抽屉里去,共有3种放法,不论如何放,必有一个抽屉里至少放进两个苹果。同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。……更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?【分析】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?【分析】从最“不利”的取出情况入手。最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。故总共至少应取出10+5=15个球。思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?(答案分别为31和33)当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。提示语抽屉原理还可以反过来理解:假如把n+1个苹果放到n个抽屉里,放2个或2个以上苹果的抽屉一个也没有(与“必有一个抽屉放2个或2个以上的苹果”相反),那么,每个抽屉最多只放1个苹果,n个抽屉最多有n个苹果,与“n+1个苹果”的条件矛盾。运用抽屉原理的关键是“制造抽屉”。通常,可采用把n个“苹果”进行合理分类的方法来制造抽屉。比如,若干个同学可按出生的月份不同分为12类,自然数可按被3除所得余数分为3类排列组合问题例1:某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?分析:某人买饭要分两步完成,即先买一种主食,再买一种副食。其中,买主食有3种不同的方法,买副食有5种不同的方法。故可以由乘法原理解决:解:由乘法原理,主食和副食各买一种共有3×5=15种不同的方法。例2:书架上有6本不同的外语书,4本不同语文书,从中任取外语、语文书各一本,有多少本不同的取法?分析:要做的事情是从外语、语文书中各取一本。完成它要分两步:即先取一本外语书(有6种取法),再取一本语文书(有4种取法)。所以,用乘法原理解决。解:从架上各取一本共有6×4=24种不同的取法。例3:由数字0、1、2、3组成的三位数,问:(1)、可组成多少个不相等的三位数?(2)、可组成多少个没有重复数字的三位数?分析:在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。所以,每个问题都可以看成是分三个步骤来完成。(1):要求组成不相等的三位数。所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法,由乘法原理,共可组成3×4×4=48个不相等的三位数。(2):要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位上已在1、2、3中取走一个,故只剩下0和其它两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法,由乘法原理,共有3×3×2=18个没有重复数字的三位数。例4:现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析:要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做。如先取一解的,再取贰角的,最后取壹元的。但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的。这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑。即从中取出几张组成一种面值,看共可以组成多少种。分析得知,共可以组成从壹角到捌角间的任何一种面值,共8种情况。整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱。这样,第一步,从8张壹角的人民币中取,共9种取法,即0、1、2、3、4、5、6、7、8;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.由乘法原理,共有9×4=36种情形,但注意到,要求”至少取一张”而现在包含了一张都不取的这一种情形,应减掉。所以有35种不同的情形。例5:学校组织读书活动,要求每个同学读一本书。小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本。那么,小明借一本书可以有多少种不同的选法?分析:在这个问题中,小明选一本书有三类方法。即要么选外语书,要么选科技书,要么选小说。所以,是就用加法原理的问题。解:小明借一本书共有:150+200+100=450(种)不同的选法。例6:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。问:(1)、从两个口袋内任取一个小球,有多少种不同的取法?(2)、从两个口袋内各取一个小球,有多少种不同的取法?分析:(1)、从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。所以是加法原理的问题。(2)、要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。解(1):3+8=11(种)(2):3×8=24(种)例7:有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6。将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析:要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字同为奇数,要么同为偶数,所以,要分两大类来考虑。第一类:两个数字同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影院装修合同补充协议
- 物资置换合同协议书范本
- 黑龙江拖拉机租赁协议书
- 电动三轮车抵押合同范本
- 烘干厂承包协议合同范本
- 消费合伙人协议合同范本
- 职称评审委托协议书范本
- 电梯施工合同安全协议书
- 汽修店合伙协议合同模板
- 玻璃铁架子厂家合同范本
- 非婚生子女抚养权协议书
- 浙江国企招聘2025宁波慈溪市国有企业公开招聘公交驾驶员25人笔试参考题库附带答案详解版
- 2025年省国有资本运营控股集团有限公司人员招聘笔试备考试题及答案详解(名校卷)
- 2025村后备干部考试题库(含答案)
- 2025年辅警招聘考试试题库完整答案
- 《电工技能与实训》校本教材
- 技术水平评价报告【范本模板】
- 宿州萧县乡镇事业单位招聘考试真题2024
- 2024译林版英语初一上单词默写表
- 防雷接地施工方案1
- 水利水电工程项目法人验收工作计划总结总结
评论
0/150
提交评论