版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水市杨院中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.边长为5,7,8的三角形的最大角与最小角的和是()A.90° B.150° C.135° D.120°参考答案:D【考点】余弦定理.【专题】解三角形.【分析】设长为7的边所对的角为θ,根据余弦定理可得cosθ的值,进而可得θ的大小,则由三角形内角和定理可得最大角与最小角的和是180°﹣θ,即可得答案.【解答】解:根据三角形角边关系可得,最大角与最小角所对的边的长分别为8与5,设长为7的边所对的角为θ,则最大角与最小角的和是180°﹣θ,由余弦定理可得,cosθ==,得θ=60°,则最大角与最小角的和是180°﹣θ=120°,故选:D.【点评】本题考查余弦定理的运用,三角形的边角对应关系的应用,解本题时注意与三角形内角和定理结合分析题意.2.如图,将一个各面都涂了油漆的正方体,切割为64个同样大小的小正方体,经过搅拌后,从中随机取出一个小正方体,记它的油漆面数为X,则X的均值E(X)=(
)A.
B.
C.
D.参考答案:C由题意知,;;;;.故选:C.
3.2015年4月22日,亚非领导人会议在印尼雅加达举行,某五国领导人A,B,C,D,E,除B与E、D与E不单独会晤外,其他领导人两两之间都要单独会晤,现安排他们在两天的上午、下午单独会晤(每人每个半天最多只进行一次会晤),那么安排他们单独会晤的不同方法共有()A.48种 B.36种 C.24种 D.8种参考答案:A【考点】排列、组合及简单计数问题.【分析】单独会晤,共有AB,AC,AD,AE,BC,BD,CD,CE共8种情况,再分步,即可得出结论.【解答】解:单独会晤,共有AB,AC,AD,AE,BC,BD,CD,CE共8种情况,设为第n次,分成四个时段,每个时段[即某个上午或下午]有两次,各个时段没有关系.设第一次会晤有E,则有两种方法(不防设为AE),则第二次会晤在BCD内任选(设为BC),有三种方法,第三次设再有E则有一种方法(CE),第四次在ABD内任选则有两种方法(设为AD),则剩下的排序只有4种,则有2×3×1×2×4=48种.故选:A.4.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,使得x+2ax0+2-a=0,若“p且q”为真命题,则实数a的取值范围是D.A.a=1或≤-2
B.a≤-2或1≤a≤2C.a≥1
D.-2≤a≤1参考答案:A5.用秦九韶算法计算多项式,在时的值时,的值为(
)A.-845
B.220
C.-57
D.34参考答案:C6.在平面直角坐标系中,曲线C:经过伸缩变换后,所得曲线的焦点坐标为(
).A.
B.
C.
D.参考答案:D略7.设函数的导数的最大值为3,则的图象的一条对称轴的方程是
A. B. C. D.参考答案:8.设集合,则A所表示的平面区域(不含边界的阴影部分)是()
A
B
C
D
参考答案:A略9.若变量x,y满足约束条件,则z=3x+y的最大值为()A.4 B.9 C.12 D.14参考答案:C【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合定点最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,得A(3,3),化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过点A时,直线在y轴上的截距最大,z有最大值为9+3=12.故选:C.10.我们把底面是正三角形,顶点在底面的射影是正三角形中心的三棱锥称为正三棱锥。现有一正三棱锥放置在平面上,已知它的底面边长为2,高为,在平面上,现让它绕转动,并使它在某一时刻在平面上的射影是等腰直角三角形,则的取值范围是(
)A.
B.
C..
D.参考答案:【知识点】三垂线定理.【答案解析】C解析:解:图(1)
图(2)
图(3)如图(1)当绕BC旋转至P点在底面的射影正好在BC中点D时,假如正三棱锥在平面上的射影正好是等腰直角,连接DA.,设P点在底面ABC上的射影点为H,其在DA上,连接PH,PH=h为正三棱锥的高,其中=1,,,,,而当时满足题意,PH值再大就会使锥在底面的射影是四边形了.当继续旋转至如图(2)时,假如正好是三棱锥在底面的射影是等腰直角三角形且面垂直于底面,设点P在面的射影点为,取BC的中点为E,连接AE..,设P点在底面中的射影为O,连接PO,设PO=h,在中,,=所以,如果PO值再大,三棱锥在面内的射影就又是四边形了,再小可继续旋转直到侧面PBC为等腰直角三角形时就成了图(3)状态,也合题意,此时如图E为BC中点,O仍为P在底面三角形ABC射影,连接AE.PE.PO,,PE=1,则,所以综上,的取值范围是.
故选:C.【思路点拨】由题意可知变化过程中,图形为三种情况,依次考虑即可.二、填空题:本大题共7小题,每小题4分,共28分11.在ABC中,,,若(O是ABC的外心),则的值为
。
参考答案:12.若数列是等差数列,前n项和为,则参考答案:113.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是__________(写出所有正确结论的编号).①矩形;
②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;
⑤每个面都是直角三角形的四面体.参考答案:①③④⑤考点:棱柱的结构特征.专题:综合题.分析:先画出图形,再在底面为正方形的长方体上选择适当的4个顶点,观察它们构成的几何形体的特征,从而对五个选项一一进行判断,对于正确的说法只须找出一个即可.解答:解:如图:①正确,如图四边形A1D1BC为矩形②错误任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1D1BC为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.故答案为①③④⑤点评:本题主要考查了点、线、面间位置特征的判断,棱柱的结构特征,能力方面考查空间想象能力和推理论证能力,属于基础题.找出满足条件的几何图形是解答本题的关键14.个正整数排列如下:1,2,3,4,……,n2,3,4,5,……,n+13,4,5,6,……,n+2……n,n+1,n+2,n+3,……,2n-1则这个正整数的和
▲
.参考答案:15.已知I是虚数单位,若(2+i)(m﹣2i)是实数,则实数m=
.参考答案:4(2+i)(m﹣2i)=2m+2+(m﹣4)i是实数,则m﹣4=0,解得m=4.故答案为:4.
16.在平行六面体中,化简的结果为______________;参考答案:17.已知集合A={a,b,2},B={2,b2,2a},且A∩B=A∪B,则a=_______.参考答案:0或三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中,曲线C1的参数方程为(α是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)求曲线C1上的任意一点P到曲线C2的最小距离,并求出此时点P的坐标.参考答案:【考点】简单曲线的极坐标方程.【分析】(1)曲线C1的参数方程为(α是参数),x=2cos2α=1+cos2α,利用cos22α+sin22α=1即可得出.曲线C2的极坐标方程为ρ=,化为ρsinθ﹣ρcosθ=1,利用即可得出.(2)设与曲线C2平行且与曲线C1的直线方程为y=x+t,代入圆的方程可得:2x2+2(t﹣1)x+t2=0,利用△=0,解得t.利用平行线之间的距离公式可得最小距离,进而得出点P.【解答】解:(1)曲线C1的参数方程为(α是参数),x=2cos2α=1+cos2α,∴(x﹣1)2+y2=1.曲线C2的极坐标方程为ρ=,化为ρsinθ﹣ρcosθ=1,∴y﹣x=1,即x﹣y+1=0.(2)设与曲线C2平行且与曲线C1的直线方程为y=x+t,代入圆的方程可得:2x2+2(t﹣1)x+t2=0,∵△=4(t﹣1)2﹣8t2=0,化为t2+2t﹣1=0,解得.取t=﹣1,直线y=x+1与切线的距离d==﹣1,即为曲线C1上的任意一点P到曲线C2的最小距离.此时2x2+2(t﹣1)x+t2=0,化为=0,解得x==,y=,∴P.19.已知函数.(1)求的单调区间;(2)设为函数的两个零点,求证:.参考答案:(1)的单调递减区间为,单调递增区间为.(2)见证明,【分析】(1)利用导数求函数单调区间的一般步骤即可求出;(2)将零点问题转化成两函数以及图像的交点问题,通过构造函数,依据函数的单调性证明即可。【详解】解:(1)∵,∴.当时,,即的单调递减区间为,无增区间;当时,,由,得,当时,;当时,,∴时,的单调递减区间为,单调递增区间为.(2)证明:由(1)知,的单调递减区间为,单调递增区间为,不妨设,由条件知即构造函数,则,由,可得.而,∴.知在区间上单调递减,在区间单调递增,可知,欲证,即证.考虑到在上递增,只需证,由知,只需证令,则.所以为增函数.又,结合知,即成立,所以成立.【点睛】本题考查了导数在函数中的应用,求函数的单调区间,以及函数零点的常用解法,涉及到分类讨论和转化与化归等基本数学思想,意在考查学生的逻辑推理、数学建模和运算能力。20.已知定义域为的函数是奇函数.(Ⅰ)求,的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围.参考答案:
(5分)(Ⅱ)由(Ⅰ)知由上式易知在上为减函数。
(7分)又因为为奇函数,从而不等式,等价于
(8分)
略21.已知a,b,c均为实数,且,,,求证:a,b,c中至少有一个大于0.参考答案:证明:假设a,b,c都不大于,即a≤0,b≤0,c≤0,得a+b+c≤0,而a+b+c=(x-1)2+(y-1)2+(z-1)2+π-3>0,即a+b+c>0,与a+b+c≤0矛盾,故假设a,b,c都不大于是错误的,所以a,b,c中至少有一个大于0.22.已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+x2﹣bx.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)﹣g(x2)的最小值.参考答案:【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【分析】(1)求导数,利用导数的几何意义能求出实数a的值.(2)由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,由此能求出实数b的取值范围.(3)g(x1)﹣g(x2)=ln﹣(﹣),由此利用构造成法和导数性质能求出g(x1)﹣g(x2)的最小值.【解答】解:(1)∵f(x)=x+alnx,∴f′(x)=1+,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文学科核心素养的内涵
- 增城市英语短文语法填空阅读理解高考一轮训练及答案( 高考)
- 高考志愿填报的方法与技巧图文
- 三年级心理健康教育教案--学案教案
- 中学生心理健康教案
- 全省小学数学教师赛课一等奖数学一年级上册(人教2024年新编)《数学游戏》课件
- 高中物理第一章静电场课时5电势差课件新人教版选修3-
- 2024至2030年中国弹力亚麻棉数据监测研究报告
- 2024至2030年中国干式温度槽行业投资前景及策略咨询研究报告
- 2024至2030年中国天然蔺草荞麦枕数据监测研究报告
- 物质的输入和输出.PPT
- 民事案件卷宗目录封面11
- 2022年2022年古籍样式排版模板
- 大班绘本:喜欢钟表的国王ppt课件
- 艺术装饰艺术运动
- 樊登读书会营销策略分析
- 国潮风喜迎中秋节传统节日介绍主题班会PPT模板
- 工程维修承诺书范本
- 《工作协调单》模板
- 《电动汽车》课件(PPT)
- 火力发电厂 施工图设计计守则( 热 机 篇)
评论
0/150
提交评论