河南省平顶山市鲁山县第三高级中学高三数学文模拟试卷含解析_第1页
河南省平顶山市鲁山县第三高级中学高三数学文模拟试卷含解析_第2页
河南省平顶山市鲁山县第三高级中学高三数学文模拟试卷含解析_第3页
河南省平顶山市鲁山县第三高级中学高三数学文模拟试卷含解析_第4页
河南省平顶山市鲁山县第三高级中学高三数学文模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省平顶山市鲁山县第三高级中学高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某空间几何体的三视图如图所示,则此几何体的体积为(

)A.10 B.15 C.20 D.30参考答案:C【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由已知中的三视力可得该几何体是一个以俯视图为底面的三棱柱,切去一个同底等高的三棱锥所得的几何体,分别求出棱柱和棱锥的体积,相减可得答案.【解答】解:由已知中的三视力可得该几何体是一个以俯视图为底面的三棱柱,切去一个同底等高的三棱锥所得的几何体,∵底面面积S=×4×3=6,高h=5,故组合体的体积V=Sh﹣Sh=Sh=20,故选:C【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.2.设f(x)=ax3+bx2+cx+d(a≠0).已知五个方程的相异实根个数如下表所述﹕f(x)﹣20=01f(x)+10=01f(x)﹣10=03f(x)+20=01f(x)=03

α为关于f(x)的极大值﹐下列选项中正确的是()A.0<α<10 B.10<α<20 C.﹣10<α<0 D.﹣20<α<﹣10参考答案:B【考点】函数与方程的综合运用;函数的图象.【专题】函数的性质及应用.【分析】方程f(x)﹣k=0的相异实根数可化为方程f(x)=k的相异实根数,方程f(x)=k的相异实根数可化为函数y=f(x)与水平线y=k两图形的交点数﹒则依据表格可画出其图象的大致形状,从而判断极小值的取值范围.【解答】解﹕方程f(x)﹣k=0的相异实根数可化为方程f(x)=k的相异实根数,方程f(x)=k的相异实根数可化为函数y=f(x)与水平线y=k两图形的交点数﹒依题意可得两图形的略图有以下两种情形﹕(1)当a为正时,(2)当a为负时,因极大值点a位于水平线y=10与y=20之间﹐所以其y坐标α(即极大值)的范围为10<α<20﹒故选:B﹒【点评】评:本题考查了方程的根与函数的图象的应用及数形结合思想的应用,属于中档题.3.设全集U={a、b、c、d},A={a、c},B={b},则A∩(CuB)=(A)

(B){a}

(C){c}

(D){a,c}参考答案:答案:D解析:A∩(CuB)={a,c}4.给定函数①,②,③,④,其中在区间(0,1)上单调递减的函数的序号是(

)A.①②

B.②③

C.③④

D.①④参考答案:B略5.已知变量与变量之间具有相关关系,并测得如下一组数据则变量与之间的线性回归方程可能为(

)A.

B.

C.

D.参考答案:B6.已知等差数列{}满足则它的前10项的和S10=A.138

B.135

C.95

D.23参考答案:C7.如图所示的程序框图,若输出的,则判断框内应填入的条件是(

)A.

B.

C.

D.参考答案:B

考点:程序框图8.角的终边经过点,则的可能取值为(A)

(B)

(C)

(D)参考答案:D9.已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=

参考答案:B10.一个简单组合体的三视图及尺寸如图所示(单位:㎝),该组合体的体积为A.42㎝3

B.48㎝3

C.56㎝3

D.44㎝3参考答案:D由三视图可知该几何体是一个长、宽、高分别为6、4、1的长方体和一个底面积为×4×5、高为2的三棱柱组合而成,其体积V=1×4×6+×4×5×2=44(cm3).二、填空题:本大题共7小题,每小题4分,共28分11.《九章算术》中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”大意为:有个圆柱形木头,埋在墙壁中(如图所示),不知道其大小,用锯沿着面AB锯掉裸露在外面的木头,锯口CD深1寸,锯道AB长度为1尺,问这块圆柱形木料的直径是__________.(注:1尺=10寸)参考答案:26寸设圆柱形木料的半径是,则,得,所以圆柱形木料的直径是26寸.12.若M是抛物线y2=4x上一点,且在x轴上方,F是抛物线的焦点,直线FM的倾斜角为60°,则|FM|=

.参考答案:4考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线方程求出抛物线的焦点坐标,由直线倾斜角求出斜率,写出直线方程,和抛物线方程联立求得M的坐标,再由抛物线焦半径公式得答案.解答: 解:如图,由抛物线y2=4x,得F(1,0),∵直线FM的倾斜角为60°,∴,则直线FM的方程为y=,联立,即3x2﹣10x+3=0,解得(舍)或x2=3.∴|FM|=3+1=4.故答案为:4.点评:本题考查了抛物线的简单几何性质,考查了数学转化思想方法,是中档题.13.某几何体的三视图如图,则该几何体的体积为

.参考答案:2试题分析:由三视图知该几何体是四棱锥,.考点:三视图,体积.【名师点睛】三视图问题,关键是由三视图画出几何体的直观图而且也是难点,有许多几何体可以看作是由正方体(或长方体)切割形成的,因此在画直观图时,我们可以先画出正方体(或长方体),然后在正方体(或长方体)上取点,想投影,连线,得结论(几何体直观图),这样做几何体中线面位置关系与线段长度都能明确显示,易于求解.14.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=

.参考答案:{1,4}【分析】把A中元素代入y=3x﹣2中计算求出y的值,确定出B,找出A与B的交集即可.【解答】解:把x=1,2,3,4分别代入y=3x﹣2得:y=1,4,7,10,即B={1,4,7,10},∵A={1,2,3,4},∴A∩B={1,4},故答案为:{1,4},15.已知双曲线的左、右焦点分别为F1、F2,抛物线与双曲线C1共焦点,C1与C2在第一象限相交于点P,且,则双曲线的离心率为

。参考答案:16.若正三棱锥的底面边长为,侧棱长为,则其外接球的体积为__________.参考答案:;

17.设,满足约束条件,则的最小值为

.参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆的右焦点为,且点在椭圆C上.(1)求椭圆C的标准方程;(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴,y轴上的截距分别为m,n,证明:为定值;(3)若是椭圆上不同两点,轴,圆E过,且椭圆C2上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆C2是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.参考答案:(1);(2)证明见解析;(3).【分析】(1)由焦点坐标确定出c的值,根据椭圆的性质列出a与b的方程,再将P点坐标代入椭圆方程列出关于a与b的方程,联立求出a与b的值,确定出椭圆方程即可.(2)由题意:确定出C1的方程,设点P(x1,y1),M(x2,y2),N(x3,y3),根据M,N不在坐标轴上,得到直线PM与直线OM斜率乘积为﹣1,确定出直线PM的方程,同理可得直线PN的方程,进而确定出直线MN方程,求出直线MN与x轴,y轴截距m与n,即可确定出所求式子的值为定值.(3)依题意可得符合要求的圆E,即为过点F,P1,P2的三角形的外接圆.所以圆心在x轴上.根据题意写出圆E的方程.由于圆的存在必须要符合,椭圆上的点到圆E距离的最小值是|P1E|,结合图形可得圆心E在线段P1P2上,半径最小.又由于点F已知,即可求得结论.【详解】(1)∵椭圆C:的右焦点为F(1,0),且点P(1,)在椭圆C上;∴,解得a=2,b=,∴椭圆C的标准方程为.(2)由题意:C1:,设点P(x1,y1),M(x2,y2),N(x3,y3),∵M,N不在坐标轴上,∴kPM=﹣=﹣,∴直线PM的方程为y﹣y2=﹣(x﹣x2),化简得:x2x+y2y=,①,同理可得直线PN的方程为x3x+y3y=,②,把P点的坐标代入①、②得,∴直线MN的方程为x1x+y1y=,令y=0,得m=,令x=0得n=,∴x1=,y1=,又点P在椭圆C1上,∴()2+3()2=4,则=为定值.(3)由椭圆的对称性,可以设P1(m,n),P2(m,﹣n),点E在x轴上,设点E(t,0),则圆E的方程为:(x﹣t)2+y2=(m﹣t)2+n2,由内切圆定义知道,椭圆上的点到点E距离的最小值是|P1E|,设点M(x,y)是椭圆C上任意一点,则|ME|2=(x﹣t)2+y2=,当x=m时,|ME|2最小,∴m=﹣,③,又圆E过点F,∴(﹣)2=(m﹣t)2+n2,④点P1在椭圆上,∴,⑤由③④⑤,解得:t=﹣或t=﹣,又t=﹣时,m=﹣<﹣2,不合题意,综上:椭圆C存在符合条件的内切圆,点E的坐标是(﹣,0).【点睛】本题考查了直线与圆锥曲线的综合问题,椭圆的标准方程,韦达定理,以及椭圆的简单性质,熟练掌握椭圆的简单性质是解本题的关键.19.已知向量,(Ⅰ)当时,求函数的值域;(Ⅱ)不等式≤,当时恒成立,求的取值范围.参考答案:略20.(12分)

已知函数.(Ⅰ)求的值域和最小正周期;

(Ⅱ)设,且,求的值.参考答案:解析:(Ⅰ)解:

------------------2分,

----------------------4分因为(其中R),所以,即函数的值域为.

----------------6分函数的最小正周期为.

-------------------8分(Ⅱ)解:由(Ⅰ)得,所以,

------------------9分因为,所以,

-------------------10分

所以,

所以.

----------------12分21.已知极坐标系的极点与直角坐标第的原点重合,极轴与直角坐标系的x轴的正半轴重合.点A、B的极坐标分别为(2,π)、(a∈R),曲线C的参数方程为为参数)(Ⅰ)若,求△AOB的面积;(Ⅱ)设P为C上任意一点,且点P到直线AB的最小值距离为1,求a的值.参考答案:【考点】简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(1)当时,A(﹣2,0),B(2,2),由于kOB=1,可得∠AOB=135°.利用S△OAB=即可得出.(2)曲线C的参数方程为为参数),化为(x﹣1)2+y2=4,圆心C(1,0),半径y=2.由题意可得:圆心到直线AB的距离为3,对直线AB斜率分类讨论,利用点到直线的距离公式即可得出.【解答】解:(1)当时,A(﹣2,0),B(2,2),∵kOB=1,∴∠AOB=135°.∴.(2)曲线C的参数方程为为参数),化为(x﹣1)2+y2=4,圆心C(1,0),半径y=2.∵点P到直线AB的最小值距离为1,∴圆心到直线AB的距离为3,当直线AB斜率不存在时,直线AB的方程为x=﹣2,显然,符合题意,此时.当直线AB存在斜率时,设直线AB的方程为y=k(x+2),则圆心到直线AB的距离,依题意有,无解.故.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形的面积计算公式、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.22.已知点P(﹣1,)是椭圆E:(a>b>0)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.(1)求椭圆E的方程;(2)已知圆O:x2+y2=r2(0<r<b),直线l与圆O相切,与椭圆相交于A、B两点,若,求圆O的方程.参考答案:【考点】直线与椭圆的位置关系.【分析】(1)由题意可知:c=1,==,即可求得a和b的值,求得椭圆方程;(2)方法一:设A(ρ1cosθ,ρ1sinθ),B(﹣ρ2sinθ,ρ2cosθ),代入椭圆方程,由同角三角函数的基本关系,即,即可取得圆O的方程;方法二:设直线方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算求得7m2=12k2+12,则点到直线的距离公式即可求得半径r,即可取得圆O的方程.【解答】解:(1)由题意可知:c=1,==,则a=2,b=,∴椭圆的标准方程为:(2)方法一:设圆O:x2+y2=r2;由,可设A(ρ1cosθ,ρ1sinθ),则B(﹣ρ2sinθ,ρ2co

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论