重庆分水镇分水中学高三数学文摸底试卷含解析_第1页
重庆分水镇分水中学高三数学文摸底试卷含解析_第2页
重庆分水镇分水中学高三数学文摸底试卷含解析_第3页
重庆分水镇分水中学高三数学文摸底试卷含解析_第4页
重庆分水镇分水中学高三数学文摸底试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆分水镇分水中学高三数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.由函数的图象经过平移得到函数的图象,下列说法正确的是A.向左平移个单位长度

B.向左平移

个单位长度

C.向右平移个单位长度

D.向右平移个单位长度参考答案:B2.已知向量且与的夹角为锐角,则的取值范围是(

)A.

B.

C.

D.

参考答案:B略3.如图为某几何体的三视图,则其体积为(

)A.

B.

C.

D.参考答案:D试题分析:由三视图可知,该几何体是一个半圆柱(所在圆柱)与四棱锥的组合体,其中四棱锥的底面为圆柱的轴截面,顶点在半圆柱所在圆柱的底面圆上(如图所示),且在上的射影为底面的圆心.由三视图数据可得,半圆柱所在的圆柱的底面半径,高,故其体积;四棱锥的底面为边长为的正方形,,且,故其体积,故该几何体的体积.考点:三视图的识读和理解.4.执行如图所示的程序框图,如果输入n=4,则输出的S=()A. B. C. D.参考答案:D【考点】程序框图.【分析】由已知中的程序框图可知,该程序的功能是计算出输出S=+++的值,利用裂项相消法,可得答案.【解答】解:由已知中的程序框图可知,该程序的功能是计算并输出S=+++的值,由于:S=+++=×(1﹣﹣+…+﹣)=(1﹣)=.故选:D.【点评】本题考查的知识点是程序框图,其中根据已知的程序框图分析出程序的功能是解答的关键,属于基础题.5.某几何体的三视图如图所示,图中的四边形都是边长为的正方形,两条虚线互相垂直,则该几何体的体积是().

.参考答案:A由三视图知,原几何体为一个正方体挖掉一个正四棱锥其中正方体的棱为2,正四棱锥的底面边长为正方体的上底面,高为1.∴原几何体的体积为,选A.6.设复数z满足z+i=3-i,则=(A)-1+2i

(B)1-2i

(C)3+2i

(D)3-2i参考答案:C由z+i=3-i得,z=3-2i,故选C.7.阅读右边的程序框图,运行相应的程序,则输出s的值为(

A.3

B.1

C.0

D.-1参考答案:B8.在中产生区间上均匀随机数的函数为“()”,在用计算机模拟估计函数的图像、直线和轴在区间上部分围成的图形面积时,随机点与该区域内的点的坐标变换公式为A.

B.C.

D.参考答案:D略9.若偶函数f(x)在(﹣∞,0]上单调递减,a=f(log23),b=f(log45),c=f(2),则a,b,c满足()A.a<b<c B.b<a<c C.c<a<b D.c<b<a参考答案:B【考点】3F:函数单调性的性质;4M:对数值大小的比较.【分析】由偶函数f(x)在(﹣∞,0]上单调递减,可得f(x)在{0,+∞)上单调递增,比较三个自变量的大小,可得答案.【解答】解:∵偶函数f(x)在(﹣∞,0]上单调递减,∴f(x)在{0,+∞)上单调递增,∵2>log23=log49>log45,2>2,∴f(log45)<f(log23)<f(2),∴b<a<c,故选:B.10.不等式的解集为(

)A.(0,2)

B.(-2,0)∪(2,4)

C.(-4,0)

D.(-4,-2)∪(0,2)

参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知满足对任意都有成立,则的取值范围是___

____.参考答案:12.已知命题,则为

.参考答案:略13.已知一个几何体的三视图及有关数据如图所示,则该几何体的体积为参考答案:【考点】由三视图求面积、体积.【分析】根据三视图得出该几何体是四棱锥,画出直观图,利用四棱锥的一个侧面与底面垂直,作出四棱锥的高线,求出棱锥的高,即可求出棱锥的体积.【解答】解:由三视图知:该几何体是四棱锥,其直观图如图所示;四棱锥的一个侧面SAB与底面ABCD垂直,过S作SO⊥AB,垂足为O,∴SO⊥底面ABCD,SO=2×=,底面为边长为2的正方形,∴几何体的体积V=×2×2×=.故答案为:.14.已知函数是定义在上的奇函数,且对于任意,恒有成立,当时,,则

.参考答案:15.某几何体的三视图如图所示,且该几何体的体积为3,则正视图中的x=____参考答案:316.若二次函数在区间[1,2]上有两个不同的零点,则的取值范围为

.参考答案:[0,1)设,则

17.(1﹣2x)6的展开式中,x3项的系数为.(用数字作答)参考答案:﹣160【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数即可.【解答】解:设求的项为Tr+1=C6r(﹣2x)r令r=3,∴T4=﹣C6323x3=﹣160x3.故答案为:﹣160.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在平面直角坐标系xOy中,过椭圆C:内一点A(0,1)的动直线l与椭圆相交于M,N两点,当l平行于x轴和垂直于x轴时,l被椭圆C所截得的线段长均为.(1)求椭圆C的方程;(2)是否存在与点A不同的定点B,使得对任意过点A的动直线l都满足?若存在,求出定点B的坐标;若不存在,请说明理由.参考答案:只要证x12[(1+k2)x22-2kx2+1)]=x22[(1+k2)x12-2kx1+1)],即证2kx12x2-2kx22x1+x22-x12=0,即证(x1-x2)[2kx1x2-(x1+x2)]=0.因为所以存在与点A不同的定点B(0,2),使得对任意过点A的动直线l都满足.【说明】考查椭圆的标准方程,直线与椭圆的位置关系,定点的探求等.突出基本量运算、代数式恒等变形、由特殊到一般等方法.19.已知函数f(x)=(a+)lnx+-x(a>1).(Ⅰ)讨论f(x)在区间(0,1)上的单调性;(Ⅱ)当a≥3时,曲线y=f(x)上总存在相异两点P(x1,f(x1)),Q(x2,f(x2)),使得曲线y=f(x)在点P,Q处的切线互相平行,求证:x1+x2>.参考答案:略20.已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=10,a2=15.(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列{an},{bn}的通项公式;(Ⅲ)设,如果对任意正整数n,不等式恒成立,求实数a的取值范围.参考答案:【考点】等差数列与等比数列的综合;数列与不等式的综合.【分析】(Ⅰ)通过已知得到关于数列的项的两个等式,处理方程组得到,利用等差数列的定义得证(Ⅱ)利用等差数列的通项公式求出,求出bn,an.(Ⅲ)先通过裂项求和的方法求出Sn,代入化简得到关于n的二次不等式恒成立,构造新函数,通过对二次项系数的讨论求出函数的最大值,令最大值小于0,求出a的范围.【解答】解:(Ⅰ)由已知,得2bn=an+an+1①,an+12=bn?bn+1②.由②得③.将③代入①得,对任意n≥2,n∈N*,有.即.∴是等差数列.(Ⅱ)设数列的公差为d,由a1=10,a2=15.经计算,得.∴.∴.∴,.(Ⅲ)由(1)得.∴.不等式化为.即(a﹣1)n2+(3a﹣6)n﹣8<0.设f(n)=(a﹣1)n2+(3a﹣6)n﹣8,则f(n)<0对任意正整数n恒成立.当a﹣1>0,即a>1时,不满足条件;当a﹣1=0,即a=1时,满足条件;当a﹣1<0,即a<1时,f(n)的对称轴为,f(n)关于n递减,因此,只需f(1)=4a﹣15<0.解得,∴a<1.综上,a≤1.21.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别是BC和CC1的中点,已知AB=AC=AA1=4,∠BAC=90°.(Ⅰ)求证:B1D⊥平面AED;(Ⅱ)求二面角B1﹣AE﹣D的余弦值.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】立体几何.【分析】(Ⅰ)建立空间直角坐标系,求出相关点的坐标,分别计算?=0,?=0,利用直线与平面垂直的判定定理可证B1D⊥平面AED;(Ⅱ)由(Ⅰ)分别求出平面AED和平面B1AE一个法向量;利用空间两个向量的夹角公式即可求出二面角B1﹣AE﹣D的余弦值.【解答】解:(Ⅰ)依题意,建立如图所示的空间直角坐标系A﹣xyz,∵AB=AC=AA1=4,∴A(0,0,0),B(4,0,0),E(0,4,2),D(2,2,0),B1(4,0,4),∴=(﹣2,2,﹣4),=(2,2,0),=(0,4,2),∵?=﹣4+4+0=0,∴⊥,即B1D⊥AD,∵?=0+8﹣8=0,∴⊥,即B1D⊥AE,又AD,AE?平面AED,且AD∩AE=A,则B1D⊥平面AED;(Ⅱ)由(Ⅰ)知=(﹣2,2,﹣4),为平面AED的一个法向量,设平面B1AE的法向量为=(x,y,z),∵=(0,4,2),=(4,0,4),∴,得,令y=1,得x=2,z=﹣2,即=(2,1,﹣2),∴cos(,)===,∴二面角二面角B1﹣AE﹣D的余弦值为.【点评】此题考查了二面角及求法,直线与平面垂直的判定,锻炼了学生空间想象能力和逻辑推理能力,熟练掌握二面角的求法及直线与平面垂直的判定方法是解本题的关键.22.如图,已知三棱台ABC-A1B1C1,平面平面ABC,,,,E、F分别是A1C1、BC的中点.(1)证明:(2)求直线EB与平面BCC1B1所成角的正弦值.参考答案:(1)证明见解析(2)【分析】取中点,中点,分别以为轴建立空间直角坐标系.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论