江苏省海安县城南实验中学2024届数学九上期末考试试题含解析_第1页
江苏省海安县城南实验中学2024届数学九上期末考试试题含解析_第2页
江苏省海安县城南实验中学2024届数学九上期末考试试题含解析_第3页
江苏省海安县城南实验中学2024届数学九上期末考试试题含解析_第4页
江苏省海安县城南实验中学2024届数学九上期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省海安县城南实验中学2024届数学九上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块2.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25° B.50° C.65° D.75°3.已知点P(-1,4)在反比例函数的图象上,则k的值是()A. B. C.4 D.-44.如图,在中,已知点在上,点在上,,,下列结论中正确的是()A. B. C. D.5.如图,是正方形的外接圆,点是上的一点,则的度数是()A. B.C. D.6.如图,四边形ABCD内接于,它的一个外角,分别连接AC,BD,若,则的度数为()A. B. C. D.7.如图,当刻度尺的一边与⊙O相切时,另一边与⊙O的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为()A.cm B.4cm C.3cm D.2cm8.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.9.下列关于反比例函数,结论正确的是()A.图象必经过B.图象在二,四象限内C.在每个象限内,随的增大而减小D.当时,则10.计算的结果是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知关于x的一元二次方程的常数项为零,则k的值为_____.12.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.13.若关于的方程的解为非负数,且关于的不等式组有且仅有5个整数解,则符合条件的所有整数的和是__________.14.把抛物线的顶点E先向左平移3个单位,再向上平移4个单位后刚好落在同一平面直角坐标系的双曲线上,那么=__________15.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.16.当时,二次函数有最大值4,则实数的值为________.17.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.18.若关于的一元二次方程有两个相等的实数根,则的值是__________.三、解答题(共66分)19.(10分)已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.20.(6分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合计■1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.21.(6分)如图,点D、O在△ABC的边AC上,以CD为直径的⊙O与边AB相切于点E,连结DE、OB,且DE∥OB.(1)求证:BC是⊙O的切线.(2)设OB与⊙O交于点F,连结EF,若AD=OD,DE=4,求弦EF的长.22.(8分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)23.(8分)如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠B=35°,求∠CAE度数.24.(8分)为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:使用次数05101520人数11431(1)这10位居民一周内使用共享单车次数的中位数是次,众数是次.(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是.(填“中位数”,“众数”或“平均数”)(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.25.(10分)初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?26.(10分)如图,抛物线过原点,且与轴交于点.(1)求抛物线的解析式及顶点的坐标;(2)已知为抛物线上一点,连接,,,求的值;(3)在第一象限的抛物线上是否存在一点,过点作轴于点,使以,,三点为顶点的三角形与相似,若存在,求出满足条件的点的坐标;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】根据事件发生的可能性大小即可判断.【题目详解】A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B.抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C.抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D.从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【题目点拨】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.2、C【分析】根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可.【题目详解】解:∵根据圆周角定理得:∠AOC=2∠ABC,∵∠ABC+∠AOC=75°,∴∠AOC=×75°=50°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠AOC)=65°,故选C.【题目点拨】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键.3、D【分析】根据反比例函数图象上的点的坐标特征,将P(﹣1,1)代入反比例函数的解析式(k≠0),然后解关于k的方程,即可求得k=-1.【题目详解】解:将P(﹣1,1)代入反比例函数的解析式(k≠0),解得:k=-1.故选D.【题目点拨】本题考查待定系数法求反比例函数解析式,掌握求解步骤正确计算是本题的解题关键.4、B【分析】由,得∠CMN=∠CNM,从而得∠AMB=∠∠ANC,结合,即可得到结论.【题目详解】∵,∴∠CMN=∠CNM,∴180°-∠CMN=180°-∠CNM,即:∠AMB=∠∠ANC,∵,∴,故选B.【题目点拨】本题主要考查相似三角形的判定定理,掌握“对应边成比例,夹角相等的两个三角形相似”是解题的关键.5、C【分析】首先连接OB,OA,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得的度数.【题目详解】解:连接OB,OA,∵⊙O是正方形ABCD的外接圆,∴∠BOA=90°,∴=∠BOA=45°.故选:C.【题目点拨】此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.6、A【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD=∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【题目详解】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.【题目点拨】本题考查了圆内接四边形的性质,以及圆周角定理的推论,熟知圆内接四边形的对角互补是解答此题的关键.也考查了等腰三角形的性质以及三角形内角和定理.7、D【解题分析】连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=12AB=12(9−1)=4cm,∵OA=5,则OD=5−DE,在Rt△OAD中,,即解得DE=2cm.故选D.8、C【分析】根据弧长公式计算即可.【题目详解】解:该扇形的弧长=.故选C.【题目点拨】本题考查了弧长的计算:弧长公式:(弧长为l,圆心角度数为n,圆的半径为R).9、B【分析】根据反比例函数的图象和性质,逐一判断选项,即可得到答案.【题目详解】∵,∴A错误,∵k=-8<0,即:函数的图象在二,四象限内,∴B正确,∵k=-8<0,即:在每个象限内,随的增大而增大,∴C错误,∵当时,则或,∴D错误,故选B.【题目点拨】本题主要考查反比例函数的图象和性质,掌握比例系数k的意义与增减性,是解题的关键.10、D【分析】根据同底数幂相乘的运算公式进行计算即可.【题目详解】解:=故选:D.【题目点拨】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】由一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常数项为零,即可得,继而求得答案.【题目详解】解:∵一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常数项为零,∴,由①得:(k﹣1)(k﹣1)=0,解得:k=1或k=1,由②得:k≠1,∴k的值为1,故答案为:1.【题目点拨】本题是对一元二次方程根的考查,熟练掌握一元二次方程知识是解决本题的关键.12、【解题分析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.13、1【分析】解方程得x=,即a≠1,可得a≤5,a≠1;解不等式组得0<a≤1,综合可得0<a<1,故满足条件的整数a的值为1,2.【题目详解】解不等式组,可得,∵不等式组有且仅有5个整数解,∴,∴0<a≤1,解分式方程,可得x=,即a≠1又∵分式方程有非负数解,∴x≥0,即≥0,解得a≤5,a≠1∴0<a<1,∴满足条件的整数a的值为1,2,∴满足条件的整数a的值之和是1+2=1,故答案为:1.【题目点拨】考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题,熟练掌握和灵活运用相关知识是解题的关键.14、﹣1【分析】根据题意得出顶点E坐标,利用平移的规律得出移动后的点的坐标,进而代入反比例函数即可求出k的值.【题目详解】解:由题意可知抛物线的顶点E坐标为(1,-2),把点E(1,-2)先向左平移3个单位,再向上平移1个单位所得对应点的坐标为(-2,2),∵点(-2,2)在双曲线上,∴k=-2×2=-1.故答案为:-1.【题目点拨】本题考查二次函数图象与几何变换和二次函数的性质以及待定系数法求反比例函数的解析式,根据题意求得平移后的顶点坐标是解题的关键.15、【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△AFD等高,得,由,即可解出.【题目详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵E是▱ABCD的BC边的中点,∴,∵△ABE和△ABF同高,∴,∴S△ABE=S△ABF,设▱ABCD中,BC边上的高为h,∵S△ABE=×BE×h,S▱ABCD=BC×h=2×BE×h,∴S▱ABCD=4S△ABE=4×S△ABF=6S△ABF,∵△ABF与△ADF等高,∴,∴S△ADF=2S△ABF,∴S四边形ECDF=S▱ABCD﹣S△ABE﹣S△ADF=S△ABF,∴,故答案为:.【题目点拨】本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.16、2或【分析】求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.【题目详解】解:二次函数的对称轴为直线x=m,且开口向下,

①m<-2时,x=-2取得最大值,-(-2-m)2+m2+1=4,

解得,,∴不符合题意,

②-2≤m≤1时,x=m取得最大值,m2+1=4,

解得,所以,③m>1时,x=1取得最大值,-(1-m)2+m2+1=4,

解得m=2,

综上所述,m=2或时,二次函数有最大值.

故答案为:2或.【题目点拨】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.17、y=2(x+3)2+1【解题分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【题目详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+1【题目点拨】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18、1【分析】因为关于的一元二次方程有两个相等的实数根,故,代入求解即可.【题目详解】根据题意可得:解得:m=1故答案为:1【题目点拨】本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.三、解答题(共66分)19、(1)y=x2﹣x﹣4;(2)S=﹣(m﹣2)2+16,S的最大值为16;(3)点P的坐标为:(1,﹣1+)或(1,﹣1﹣).【分析】(1)根据交点式可求出抛物线的解析式;

(2)由S=S△OBC+S△OCD+S△ODA,即可求解;

(3)∠BPC=45°,则BC对应的圆心角为90°,可作△BCP的外接圆R,则∠BRC=90°,过点R作y轴的平行线交过点C与x轴的平行线于点N、交x轴于点M,证明△BMR≌△RNC(AAS)可求出点R(1,-1),即点R在函数对称轴上,即可求解.【题目详解】解:(1)∵抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),∴抛物线的表达式为:y=(x﹣4)(x+2)=x2﹣x﹣4;(2)设点D(m,m2﹣m﹣4),可求点C坐标为(0,-4),∴S=S△OBC+S△OCD+S△ODA==﹣(m﹣2)2+16,当m=2时,S有最大值为16;(3)∠BPC=45°,则BC对应的圆心角为90°,如图作圆R,则∠BRC=90°,圆R交函数对称轴为点P,过点R作y轴的平行线交过点C与x轴的平行线于点N、交x轴于点M,设点R(m,n).∵∠BMR+∠MRB=90°,∠MRB+∠CRN=90°,∴∠CRN=∠MBR,∠BMR=∠RNC=90°,BR=RC,∴△BMR≌△RNC(AAS),∴CN=RM,RN=BM,即m+2=n+4,﹣n=m,解得:m=1,n=﹣1,即点R(1,﹣1),即点R在函数对称轴上,圆的半径为:=,则点P的坐标为:(1,﹣1+)或(1,﹣1﹣).【题目点拨】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.20、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【分析】(1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【题目详解】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,∴抽取的2名同学来自同一组的概率P==【题目点拨】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.21、(1)见解析;(2)1【分析】(1)连接OE,根据切线的性质得到OE⊥AB,根据平行线的性质得到∠BOC=∠EDO,∠BOE=∠DEO,根据全等三角形的性质得到∠OCB=∠OEB=90°,于是得到BC是⊙O的切线;(2)根据直角三角形的性质得到OD=DE=1,推出四边形DOFE是平行四边形,得到EF=OD=1.【题目详解】(1)证明:连接OE,∵以CD为直径的⊙O与边AB相切于点E,∴OE⊥AB,∵DE∥OB,∴∠BOC=∠EDO,∠BOE=∠DEO,∵OE=OD,∴∠EDO=∠DEO,∴∠BOC=∠BOE,∵OB=OB,OC=OE,∴△OCB≌△OEB(SAS),∴∠OCB=∠OEB=90°,∴BC是⊙O的切线;(2)解:∵∠AEO=90°,AD=OD,∴ED=AO=OD,∴OD=DE=1,∵DE∥OF,DE=OD=OF,∴四边形DOFE是平行四边形,∴EF=OD=1,∴弦EF的长为1.【题目点拨】本题考查了切线的判定和性质,全等三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.22、(1)见解析;(2)169π(cm2).【分析】(1)根据垂径定理,即可得=,根据同弧所对的圆周角相等,证出∠BAC=∠BCD,再根据等边对等角,即可得到∠BAC=∠ACO,从而证出∠ACO=∠BCD;(2)根据垂径定理和勾股定理列出方程,求出圆的半径,即可求出圆的面积.【题目详解】解:(1)∵AB为⊙O的直径,AB⊥CD,∴=.∴∠BAC=∠BCD.∵OA=OC,∴∠BAC=∠ACO.∴∠ACO=∠BCD;(2)∵AB为⊙O的直径,AB⊥CD,∴CE=CD=×24=12(cm).在Rt△COE中,设CO为r,则OE=r﹣8,根据勾股定理得:122+(r﹣8)2=r2解得r=1.∴S⊙O=π×12=169π(cm2).【题目点拨】此题考查的是垂径定理、等腰三角形的性质、圆周角定理推论和求圆的面积,掌握垂径定理和勾股定理的结合是解决此题的关键.23、∠CAE=20°.【分析】根据等边对等角求出∠BAD,从而求出∠ADC,在等腰三角形ADC中,由三线合一求出∠CAE.【题目详解】∵BD=AD,∴∠BAD=∠B=35°,∴∠ADE=∠BAD+∠B=70°,∵AD=AC,∴∠C=∠ADE=70°,∵AD=AC,AE平分DC,∴AE⊥EC,(三线合一).∴∠EAC=90°-∠C=20°.【题目点拨】本题的解题关键是掌握等边对等角和三线合一.24、(1)10,10;(2)中位数和众数;(3)22000【分析】(1)根据众数、中位数和平均数的定义分别求解可得;

(2)由中位数和众数不受极端值影响可得答案;

(3)用总人数乘以样本中居民的平均使用次数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论