浙江省义乌市三校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第1页
浙江省义乌市三校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第2页
浙江省义乌市三校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第3页
浙江省义乌市三校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第4页
浙江省义乌市三校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省义乌市三校2024届九年级数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知(,),下列变形错误的是()A. B. C. D.2.用一个圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的高为()A. B. C. D.3.的值是()A. B. C. D.4.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2 B.1 C.0 D.-15.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)6.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)7.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数501001502005008001000合格频数4288141176448720900估计出售2000件衬衣,其中次品大约是()A.50件 B.100件 C.150件 D.200件8.如图,平行于x轴的直线AC分别交函数y=x(x≥0)与y=x(x≥0)的图象于B,C两点,过点C作y轴的平行线交y=x(x≥0)的图象于点D,直线DE∥AC交y=x(x≥0)的图象于点E,则=()A. B.1 C. D.3﹣9.如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是()A. B. C.或 D.或10.的绝对值为()A. B. C. D.11.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.812.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)二、填空题(每题4分,共24分)13.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2km,从A测得灯塔P在北偏东60°的方向,从B测得灯塔P在北偏东45°的方向,则灯塔P到海岸线l的距离为_____km.14.计算:=______.15.如图,AD,BC相交于点O,AB∥CD.若AB=2,CD=3,则△ABO与△DCO的面积之比为_____.16.已知⊙的半径为4,⊙的半径为R,若⊙与⊙相切,且,则R的值为________.17.已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米,该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式)为________.18.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠C=40°,OA=9,则BD的长为.(结果保留π)三、解答题(共78分)19.(8分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.20.(8分)解方程:21.(8分)现有、两个不透明的盒子,盒中装有红色、黄色、蓝色卡片各1张,盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从、两个盒子中任意摸出一张卡片.(1)从盒中摸出红色卡片的概率为______;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率.22.(10分)乐至县城有两座远近闻名的南北古塔,清朝道光11年至13年(公元1831--1833年)修建,南塔名为“文运塔”,高30米;北塔名为“凌云塔”.为了测量北塔的高度AB,身高为1.65米的小明在C处用测角仪CD,(如图所示)测得塔顶A的仰角为45°,此时小明在太阳光线下的影长为1.1米,测角仪的影长为1米.随后,他再向北塔方向前进14米到达H处,又测得北塔的顶端A的仰角为60°,求北塔AB的高度.(参考数据≈1.414,≈1.732,结果保留整数)23.(10分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将化为分数形式由于,设x=0.777…①则10x=7.777…②②‒①得9x=7,解得,于是得.同理可得,根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(基础训练)(1),;(2)将化为分数形式,写出推导过程;(能力提升)(3),;(注:,2.01818…)(探索发现)(4)①试比较与1的大小:1;(填“>”、“<”或“=”)②若已知,则.(注:0.285714285714…)24.(10分)已知二次函数y=ax2+bx+3的图象经过点(-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?25.(12分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.(1)求的大小;(2)求的长.26.如图,某仓储中心有一斜坡AB,其坡比为i=1∶2,顶部A处的高AC为4m,B,C在同一水平面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5m,EF=2m.将货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)

参考答案一、选择题(每题4分,共48分)1、B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【题目详解】解:由,得出,3b=4a,A.由等式性质可得:3b=4a,正确;B.由等式性质可得:4a=3b,错误;C.由等式性质可得:3b=4a,正确;D.由等式性质可得:4a=3b,正确.故答案为:B.【题目点拨】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.2、B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【题目详解】解:设此圆锥的底面半径为r,由题意得:,解得r=2cm,故这个圆锥的高为:.故选:B.【题目点拨】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.3、D【解题分析】根据负整数指数幂的运算法则进行求解即可.【题目详解】=,故选D.【题目点拨】本题考查了负整数指数幂,熟练掌握(a≠0,p为正整数)是解题的关键.4、D【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【题目详解】2x>m−3,解得x>,∵在数轴上的不等式的解集为:x>−2,∴=−2,解得m=−1;故选:D.【题目点拨】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.5、A【解题分析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【题目详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,

∵点B的坐标为(-1,2),

∴BC=1,OC=2,

∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,

∴△BOC∽△B1OD,

∴OD=2OC=4,B1D=2BC=2,

∴点B1的坐标为(2,-4),

故选:A.【题目点拨】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.6、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【题目详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),

故选:A.【题目点拨】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.7、D【分析】求出次品率即可求出次品数量.【题目详解】2000×(件).故选:D.【题目点拨】本题考查了样本估计总体的统计方法,求出样本的次品率是解答本题的关键.8、D【分析】设点A的纵坐标为b,可得点B的坐标为(,b),同理可得点C的坐标为(b,b),D点坐标(,3b),E点坐标(,3b),可得的值.【题目详解】解:设点A的纵坐标为b,因为点B在的图象上,所以其横坐标满足=b,根据图象可知点B的坐标为(,b),同理可得点C的坐标为(,b),所以点D的横坐标为,因为点D在的图象上,故可得y==3b,所以点E的纵坐标为3b,因为点E在的图象上,=3b,因为点E在第一象限,可得E点坐标为(,3b),故DE==,AB=所以=故选D.【题目点拨】本题主要考查二次函数的图象与性质.9、D【分析】根据反比例函数和正比例函数的对称性可得,交点A与B关于原点对称,得到B点坐标,再观察图像即可得到的取值范围.【题目详解】解:∵比例函数和正比例函数的图象交于,两点,∴B的坐标为(1,3)观察函数图像可得,则的取值范围为或.故答案为:D【题目点拨】本题考查反比例函数的图像和性质.10、C【分析】根据绝对值的定义即可求解.【题目详解】的绝对值为故选C.【题目点拨】此题主要考查绝对值,解题的关键是熟知其定义.11、B【分析】设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【题目详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【题目点拨】本题主要考查了用评率估计概率.12、C【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【题目详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(1,),∴AE=,OE=1.由等腰三角形底边上的三线合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐标为().故选C.【题目点拨】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.二、填空题(每题4分,共24分)13、【分析】作PD⊥AB,设PD=x,根据∠CBP=∠BPD=45°知BD=PD=x、AD=AB+BD=2+x,由sin∠PAD=列出关于x的方程,解之可得答案.【题目详解】如图所示,过点P作PD⊥AB,交AB延长线于点D,设PD=x,∵∠PBD=∠BPD=45°,∴BD=PD=x,又∵AB=2,∴AD=AB+BD=2+x,∵∠PAD=30°,且sin∠PAD=,∴,解得:x=1+,即船P离海岸线l的距离为(1+)km,故答案为1+.【题目点拨】本题主要考查解直角三角形的应用-方向角问题,解题的关键是根据题意构建合适的直角三角形及三角函数的定义及其应用.14、【分析】直接利用平面向量的加减运算法则求解即可求得,注意去括号时符号的变化.【题目详解】解:==故答案为:.【题目点拨】此题考查了平面向量的运算.此题难度不大,注意掌握运算法则是解此题的关键.15、【分析】由AB∥CD可得出∠A=∠D,∠B=∠C,进而可得出△ABO∽△DCO,再利用相似三角形的性质可求出△ABO与△DCO的面积之比.【题目详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∴.故答案为:.【题目点拨】此题考查相似三角形的判定及性质,相似三角形的面积的比等于相似比的平方.16、6或14【解题分析】⊙O1和⊙O2相切,有两种情况需要考虑:内切和外切.内切时,⊙O2的半径=圆心距+⊙O1的半径;外切时,⊙O2的半径=圆心距-⊙O1的半径.【题目详解】若⊙与⊙外切,则有4+R=10,解得:R=6;若⊙与⊙内切,则有R-4=10,解得:R=14,故答案为6或14.17、【分析】根据油箱的总量固定不变,利用每千米耗油0.1升乘以700千米即可得到油箱的总量,故可求解.【题目详解】依题意得油箱的总量为:每千米耗油0.1升乘以700千米=70升∴轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式)为故答案为:.【题目点拨】此题主要考查列函数关系式,解题的关键是根据题意找到等量关系列出关系式.18、132【解题分析】试题解析:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOD=50°,∴AD的长为50π×9180∴BD的长为π×9-52π=考点:1.切线的性质;2.弧长的计算.三、解答题(共78分)19、(1)图形见解析,点坐标;(2)作图见解析,,,的坐标分别是【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标;(2)由关于原点中心对称性画,可确定写出,,的坐标.【题目详解】解:(1),把向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系,C(3,-3);(2)分别找到的对称点,,,顺次连接,,,即为所求,如图所示,(-2,1),(-1,4),(-3,3).【题目点拨】本题考查了作图-旋转变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20、(1),;(2)【分析】(1)先移项,再利用配方法求解即可.(2)合并同类项,再利用配方法求解即可.【题目详解】(1)解得,(2)解得【题目点拨】本题考查了一元二次方程的计算,掌握利用配方法求方程的解是解题的关键.21、(1);(2)(至少一张红色卡片).【分析】(1)根据A盒中红色卡片的数量除以A盒中卡片总数计算即可;(2)画出树状图得出所有可能的情况数与至少有一张红色卡片的情况数,再根据概率公式计算即可.【题目详解】解:(1)从盒中摸出红色卡片的概率=;(2)画出树状图如下:共有6种等可能的情况,其中至少有一张红色卡片的情况有4种,∴(至少一张红色卡片).【题目点拨】本题考查的是求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.22、北塔的高度AB约为35米.【分析】设AE=x,根据在同一时间,物体高度与影子长度成正比例关系可得CD的长,在Rt△ADE中,由∠ADE=45°可得AE=DE=x,可得EF=(x-14)米,在Rt△AFE中,利用∠AFE的正切列方程可求出x的值,根据AB=AE+BE即可得答案.【题目详解】设AE=x,∵小明身高为1.65米,在太阳光线下的影长为1.1米,测角仪CD的影长为1米,∴∴CD=1.5(米)∴BE=CD=1.5(米),∵在Rt△ADE中,∠ADE=45°,∴DE=AE=x,∵DF=14米,∴EF=DE-DF=(x-14)米,在Rt△AFE中,∠AFE=60°,∴tan60°==,解得:x=()(米),故AB=AE+BE=+1.5≈35米.答:北塔的高度AB约为35米.【题目点拨】本题考查解直角三角形的应用,熟练掌握各三角函数的定义及特殊角的三角函数值是解题关键.23、(1),;(2),推导过程见解析;(3),;(4)①;②.【分析】(1)根据阅读材料的方法即可得;(2)参照阅读材料的方法,设,从而可得,由此即可得;(3)参照阅读材料方法,设,从而可得,由此即可得;先将拆分为2与的之和,再参照阅读材料的方法即可得;(4)①先参照阅读材料的方法将写成分数的形式,再比较大小即可得;②先求出,再根据①的结论可得,然后根据即可得.【题目详解】(1)设①,则②,②①得:,解得,即,设①,则②,②①得:,解得,即,故答案为:,;(2)设①,则②,②①得:,解得,即;(3)设①,则②,②①得:,解得,即;,设①,则②,②①得:,解得,则,故答案为:,;(4)①设②,则③,③②得:,解得,即,故答案为:;②因为,,所以,所以,故答案为:.【题目点拨】本题考查了有理数的大小比较、等式的性质、解一元一次方程,读懂阅读材料的方法并灵活运用是解题关键.24、(1)y=﹣x2﹣2x+1;(2)点P(﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;

(2)代入x=-2求出y值,将其与1比较后即可得出结论.【题目详解】(1)设二次函数的解析式为y=ax2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:解得;∴y=﹣x2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P(﹣2,1)在这个二次函数的图象上,【题目点拨】考查待定系数法求二次函数解析式,二次函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论