![2024届北京清华大附属中学九年级数学第一学期期末预测试题含解析_第1页](http://file4.renrendoc.com/view/41d759f5705d91a492d4396e1cec3603/41d759f5705d91a492d4396e1cec36031.gif)
![2024届北京清华大附属中学九年级数学第一学期期末预测试题含解析_第2页](http://file4.renrendoc.com/view/41d759f5705d91a492d4396e1cec3603/41d759f5705d91a492d4396e1cec36032.gif)
![2024届北京清华大附属中学九年级数学第一学期期末预测试题含解析_第3页](http://file4.renrendoc.com/view/41d759f5705d91a492d4396e1cec3603/41d759f5705d91a492d4396e1cec36033.gif)
![2024届北京清华大附属中学九年级数学第一学期期末预测试题含解析_第4页](http://file4.renrendoc.com/view/41d759f5705d91a492d4396e1cec3603/41d759f5705d91a492d4396e1cec36034.gif)
![2024届北京清华大附属中学九年级数学第一学期期末预测试题含解析_第5页](http://file4.renrendoc.com/view/41d759f5705d91a492d4396e1cec3603/41d759f5705d91a492d4396e1cec36035.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京清华大附属中学九年级数学第一学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().A. B.C. D.2.如图,,相交于点,.若,,则与的面积之比为()A. B. C. D.3.下列事件中,必然事件是()A.打开电视,正在播放宜春二套 B.抛一枚硬币,正面朝上C.明天会下雨 D.地球绕着太阳转4.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A. B. C. D.5.函数的顶点坐标是()A. B. C. D.6.已知关于的一元二次方程有两个不相等的实数根,则的取值范围为()A. B. C. D.7.一元二次方程x2-x=0的根是()A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-18.下列四个图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.9.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%10.如图,是等腰直角三角形,且,轴,点在函数的图象上,若,则的值为()
A. B. C. D.11.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A.64 B.16 C.24 D.3212.下列说法中正确的是()A.必然事件发生的概率是0B.“任意画一个等边三角形,其内角和是180°”是随机事件C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得D.如果明天降水的概率是50%,那么明天有半天都在下雨二、填空题(每题4分,共24分)13.设、是关于的方程的两个根,则__________.14.点是线段的黄金分割点,若,则较长线段的长是_____.15.如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的横坐标是_____16.是方程的解,则的值__________.17.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为,则这个正方形的边长为_____________18.如图,在正方形ABCD中,AB=4,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为_________三、解答题(共78分)19.(8分)国家教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.最喜欢的锻炼项目人数打球120跑步游泳跳绳30其他(1)这次问卷调查的学生总人数为,人数;(2)扇形统计图中,,“其他”对应的扇形的圆心角的度数为度;(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?20.(8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.21.(8分)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.22.(10分)如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.23.(10分)今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.24.(10分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选中其中一项),并将统计结果绘制成如下统计图(不完整),请根据图中信息回答问题:(1)求m,n的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.25.(12分)如图,在锐角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面积26.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?
参考答案一、选择题(每题4分,共48分)1、C【分析】根据勾股定理求出AB,并根据正弦公式:sinA=求解即可.【题目详解】∵∠C=90°,BC=3,AC=4∴∴故选C.【题目点拨】本题主要是正弦函数与勾股定理的简单应用,正确理解正弦求值公式即可.2、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【题目详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比为:1:2.∴△AOB和△DCO面积比为:1:4.故选B.【题目点拨】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.3、D【解题分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【题目详解】解:、打开电视,正在播放宜春二套,是随机事件,故错误;、抛一枚硬币,正面朝上是随机事件,故错误;、明天会下雨是随机事件,故错误;、地球绕着太阳转是必然事件,故正确;故选:.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【题目详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【题目点拨】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.5、B【分析】根据题目中的函数解析式,可以直接写出该函数的顶点坐标,本题得以解决.【题目详解】解:∵函数,∴该函数的顶点坐标是,故选:B.【题目点拨】本题主要考查二次函数的图像,关键是根据二次函数的顶点式直接得到顶点坐标即可.6、A【解题分析】根据根的判别式即可求出k的取值范围.【题目详解】根据题意有解得故选:A.【题目点拨】本题主要考查根的判别式,掌握根的判别式与根的个数之间的关系是解题的关键.7、C【分析】利用因式分解法解方程即可解答.【题目详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【题目点拨】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.8、D【分析】根据轴对称图形与中心对称图形的概念,并结合图形的特点求解.【题目详解】解:A、不是轴对称图形,是中心对称图形,故选项错误;
B、不是轴对称图形,是中心对称图形,故选项错误;
C、是轴对称图形,不是中心对称图形,故选项错误;
D、是轴对称图形,是中心对称图形,故选项正确.
故选:D.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.
轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.9、B【解题分析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.10、B【分析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.【题目详解】解:∵三角形ABC是等腰直角三角形,∠ABC=90°,CA⊥x轴,AB=1,
∴∠BAC=∠BAO=45°,
∴OA=OB=∴点C的坐标为∵点C在函数(x>0)的图象上,∴k==1.故选:B.【题目点拨】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.11、D【解题分析】设AC=x,四边形ABCD面积为S,则BD=16-x,
则:S=AC•BD=x(16-x)=-(x-8)2+32,
当x=8时,S最大=32;
所以AC=BD=8时,四边形ABCD的面积最大,
故选D.【题目点拨】二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.12、C【分析】根据必然事件、随机事件的概念以及概率的求解方法依次判断即可.【题目详解】解:A、必然事件发生的概率为1,故选项错误;B、“任意画一个等边三角形,其内角和是180°”是必然事件,故选项错误;C、投一枚图钉,“钉尖朝上”和“钉尖朝下”不是等可能事件,因此概率不能用列举法求得,选项正确;D、如果明天降水的概率是50%,是表示降水的可能性,与下雨时长没关系,故选项错误.故选:C.【题目点拨】本题考查了必然事件、随机事件和概率的理解,掌握概率的有关知识是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据根与系数的关系确定和,然后代入计算即可.【题目详解】解:∵∴=-3,=-5∴-3-(-5)=1故答案为1.【题目点拨】本题主要考查了根与系数的关系,牢记对于(a≠0),则有:,是解答本题的关键.14、【分析】根据黄金分割的概念得到较长线段,代入计算即可.【题目详解】∵C是AB的黄金分割点,
∴较长线段,∵AB=2cm,
∴P;
故答案为:.【题目点拨】本题考查了黄金分割,一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分割点,并且较长线段是整个线段的倍.15、【分析】根据函数解析式求得A(3,1),B(1,-3),得到OA=3,OB=3根据勾股定理得到AB=6,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=2,根据相似三角形的性质即可得到结论.【题目详解】∵直线交x轴于点A,交y轴于点B,
∴令x=1,得y=-3,令y=1,得x=3,
∴A(3,1),B(1.-3),
∴OA=3,OB=3,
∴AB=6,
设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,
∵∠ADP=∠AOB=91°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP=2,
∴OP=3-2或OP=3+2,
∴P(3-2,1)或P(3+2,1),
故答案为:.【题目点拨】本题考查了切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并进行分类讨论是解题的关键.16、【分析】先根据是方程的解求出的值,再进行计算即可得到答案.【题目详解】解:∵是方程的解,∴,∴,∴,∴,故答案为:.【题目点拨】本题主要考查了一元二次方程的解,解题时,逆用一元二次方程的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.17、【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【题目详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE绕点A旋转60°至△AGF,∴,∴△AEF和△ABG为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC,∴GC=,∵∠GBM=90°-∠ABG=30°,∴在Rt△BGM中,GM=m,BM=,Rt△GMC中,勾股可得,即:,解得:,∴边长为.故答案为:.【题目点拨】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC是解决此题的关键.18、2【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【题目详解】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE,∴∠FAB+∠BAE=∠BAE+∠MAE,∴∠FAE=∠MAB,∴△FAE≌△MAB(SAS),∴EF=BM.因为正方形ABCD的边长为1,则MC=1-1=3,BC=1.在Rt△BCM中,∵BC2+MC2=BM2,∴12+32=BM2,解得:BM=2,∴EF=BM=2.故答案为:2.【题目点拨】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三、解答题(共78分)19、(1)300,90;(2)10,18;(3)120人【分析】(1)根据打球人数占总人数的40%可求出总人数,再根据比例关系求出游泳人数,再用总人数减去打球、游泳、跳绳的人数即为的值;(2)用跳绳人数除以总人数,得到n%的值,即可求出n,求出其他所占比例,再乘以360°即可得到圆心角度数;(3)用1200人乘以跳绳所占比例即可得出答案.【题目详解】解:(1)总人数=(人)游泳人数(人)∴(人)故答案为:300,90;(2)n%=∴n=10,∴m%=1-40%-25%-20%-10%=5%∴“其他”对应的扇形的圆心角的度数为360°×5%=18°故答案为:10,18;(3)由于在调查的300名学生中,喜欢“跳绳”项目的学生有30名,所占的比例为.所以该年级1200名学生中估计喜欢“跳绳”项目的有人.【题目点拨】本题考查统计图,解题的关键是找到表格数据与扇形图中数据的对应关系.20、(1)50;(2)2【解题分析】(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.【题目详解】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)(2)设小明放入红球x个.根据题意得:解得:x=2(个).经检验:x=2是所列方程的根.答:小明放入的红球的个数为2.【题目点拨】本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.21、(1)(2)M点坐标为(0,0)或【解题分析】试题分析:(1)首先将抛物线的解析式设成顶点式,然后将A、C两点坐标代入进行计算;(2)首先求出点B的坐标,然后分三种情况进行计算.试题解析:(1)、依题意,设抛物线的解析式为y=a+k.由A(2,0),C(0,3)得解得∴抛物线的解析式为y=.(2)、当y=0时,有=0.解得x1=2,x2=-3.∴B(-3,0).∵△MBC为等腰三角形,则①当BC=CM时,M在线段BA的延长线上,不符合题意.即此时点M不存在;②当CM=BM时,∵M在线段AB上,∴M点在原点O上.即M点坐标为(0,0);③当BC=BM时,在Rt△BOC中,BO=CO=3,由勾股定理得BC==3,∴BM=3.∴M点坐标为(3-3,0).综上所述,M点的坐标为(0,0)或(3-3,0).考点:二次函数的综合应用.22、(1)证明见解析;(2)PA+PB=PF+FC=PC;(3)1+.【分析】(1)欲证明AD是⊙O的切线,只需推知AD⊥AE即可;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP•PD求出AP的长,即可得出答案.【题目详解】(1)证明:先作⊙O的直径AE,连接PE,∵AE是直径,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切线;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴∠PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP•PD,∴AP2=(3+AP)•1,解得:AP=或AP=(舍去),由(2)知△ABC是等边三角形,∴AC=BC=AB=2AP=1+.【题目点拨】此题属于圆的综合题,涉及了圆周角定理,切线的判定与性质,相似三角形的判定与性质,全等三角形的判定与性质等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.23、(1)详见解析(2)12【解题分析】试题分析:(1)根据列表法与画树状图的方法画出即可。(2)根据概率公式列式计算即可得解。解:(1)画树状图表示如下:抽奖所有可能出现的结果有12种。(2)∵由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国大功率电主轴行业头部企业市场占有率及排名调研报告
- 2025-2030全球3D细胞模型成像和分析系统行业调研及趋势分析报告
- 2025-2030全球无收银员结账解决方案行业调研及趋势分析报告
- 2025商业裙房买卖服务合同
- 销售合同签订流程图范本年
- 2025经济合同履约担保的法律规定具体有些
- 苹果购销合同书
- 国有股权转让合同
- 2025防水合同协议书范文
- 2025工程施工承包合同备案申报表(I)
- 2024-2025学年河南省郑州市高二上期期末考试数学试卷(含答案)
- 甲流乙流培训课件
- 儿科学川崎病说课
- 2025年云南农垦集团总部春季社会招聘(9人)管理单位笔试遴选500模拟题附带答案详解
- 《石油钻井基本知识》课件
- 电力两票培训
- TCCEAS001-2022建设项目工程总承包计价规范
- 2024.8.1十七个岗位安全操作规程手册(值得借鉴)
- 中学生手机使用管理协议书
- 给排水科学与工程基础知识单选题100道及答案解析
- 2024年土地变更调查培训
评论
0/150
提交评论