版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省贵阳市贵安新区民族中学数学九年级第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A.8 B. C.4 D.2.如图,一次函数y=﹣x+3的图象与反比例函数y=﹣的图象交于A,B两点,则不等式|﹣x+3|>﹣的解集为()A.﹣1<x<0或x>4 B.x<﹣1或0<x<4C.x<﹣1或x>0 D.x<﹣1或x>43.计算的值为()A.1 B.C. D.4.抛物线的开口方向是()A.向下 B.向上 C.向左 D.向右5.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B. C. D.46.下列命题中,不正确的是()A.对角线相等的矩形是正方形 B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等 D.顺次连结菱形各边中点所得的四边形是矩形7.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A. B. C. D.8.把抛物线向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A. B.C. D.9.下列图形的主视图与左视图不相同的是()A. B. C. D.10.下面的图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为_____.12.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为_____尺.13.如图:点是圆外任意一点,连接、,则______(填“>”、“<”或“=”)14.已知二次根式有意义,则满足条件的的最大值是______.15.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,求选取点A为坐标原点时的抛物线解析式是_______.16.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是.17.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为.18.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.三、解答题(共66分)19.(10分)某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:其中,.……0123…………3003……(2)根据表中数据,在如图所示的平面直角坐标系中描点,已画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出一条函数的性质:;(4)观察函数图象发现:若关于的方程有4个实数根,则的取值范围是.20.(6分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)(1)试写出与之间的函数关系式;(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?21.(6分)如图1,AB是⊙O的直径,过⊙O上一点C作直线l,AD⊥l于点D.(1)连接AC、BC,若∠DAC=∠BAC,求证:直线l是⊙O的切线;(1)将图1的直线l向上平移,使得直线l与⊙O交于C、E两点,连接AC、AE、BE,得到图1.若∠DAC=45°,AD=1cm,CE=4cm,求图1中阴影部分(弓形)的面积.22.(8分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用4800元购进A、B两种粽子共1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A,B两种粽子的单价;(2)若计划用不超过8000元的资金再次购进A,B两种粽子共1800个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?23.(8分)为了响应国家“大众创业、万众创新”的双创政策,大学生小王与同学合伙向市政府申请了10万元的无息创业贷款,他们用这笔贷款,注册了一家网店,招收了6名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为3500元,该网店每月还需支付其它费用0.9万元.开工后的第一个月,小王他们将该电子产品的销售单价定为6元,结果当月销售了1.8万件.(1)小王他们第一个月可以偿还多少万元的无息贷款?(2)从第二个月开始,他们打算上调该电子产品的销售单价,经过市场调研他们得出:如果单价每上涨1元,月销售量将在现有基础上减少1000件,且物价局规定该电子产品的销售单价不得超过成本价的250%.小王他们计划在第二个月偿还3.4万元的无息贷款,他们应该将该电子产品的销售单价定为多少元?24.(8分)如图1,直线y=2x+2分别交x轴、y轴于点A、B,点C为x轴正半轴上的点,点D从点C处出发,沿线段CB匀速运动至点B处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△DEC′与△BOC的重叠部分面积为S,点D的运动时间为t(秒),S与t的函数图象如图2所示.(1)VD,C坐标为;(2)图2中,m=,n=,k=.(3)求出S与t之间的函数关系式(不必写自变量t的取值范围).25.(10分)如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB扫过的面积.26.(10分)已知正比例函数y=-3x与反比例函数y=交于点P(-1,n),求反比例函数的表达式
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.【题目详解】轴,,B两点纵坐标相同,设,,则,,,,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.2、C【分析】先解方程组得A(﹣1,4),B(4,﹣1),然后利用函数图象和绝对值的意义可判断x<﹣1或x>1时,|﹣x+3|>﹣.【题目详解】解方程组得或,则A(﹣1,4),B(4,﹣1),当x<﹣1或x>1时,|﹣x+3|>﹣,所以不等式|﹣x+3|>﹣的解集为x<﹣1或x>1.故选:C.【题目点拨】考核知识点:一次函数与反比例函数.解方程组求函数图象交点是关键.3、B【解题分析】逆用同底数幂的乘法和积的乘方将式子变形,再运用平方差公式计算即可.【题目详解】解:故选B.【题目点拨】本题考查二次根式的运算,高次幂因式相乘往往是先设法将底数化为积为1或0的形式,然后再灵活选用幂的运算法则进行化简求值.4、B【分析】抛物线的开口方向由抛物线的解析式y=ax2+bx+c(a≠0)的二次项系数a的符号决定,据此进行判断即可.【题目详解】解:∵y=2x2的二次项系数a=2>0,
∴抛物线y=2x2的开口方向是向上;
故选:B.【题目点拨】本题考查了二次函数图象的开口方向.二次函数y=ax2+bx+c(a≠0)的图象的开口方向:当a<0时,开口方向向下;当a>0时,开口方向向上.5、A【解题分析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故选A.考点:1.旋转;2.勾股定理.6、A【分析】利用矩形的判定、菱形的判定、正方形的判定及平行四边形的判定定理分别进行判定后即可确定正确的选项.【题目详解】A.对角线相等的菱形是正方形,原选项错误,符合题意;B.对角线垂直平分的平行四边形是菱形,正确,不符合题意;C.正方形的对角线平分且相等,正确,不符合题意;D.顺次连结菱形各边中点所得的四边形是平行四边形,正确,不符合题意;故选A.【题目点拨】本题考查正方形、矩形、平行四边形、菱形的性质定义,根据其性质对选项进行判断是解题关键.7、B【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【题目详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选B.【题目点拨】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解8、A【解题分析】试题解析:抛物线的顶点坐标为(0,0),把点(0,0)先向右平移1个单位,再向上平移1个单位后得到的点的坐标为(1,1),所以所得的抛物线的解析式为y=(x-1)2+1.故选B.考点:二次函数图象与几何变换9、D【解题分析】确定各个选项的主视图和左视图,即可解决问题.【题目详解】A选项,主视图:圆;左视图:圆;不符合题意;B选项,主视图:矩形;左视图:矩形;不符合题意;C选项,主视图:三角形;左视图:三角形;不符合题意;D选项,主视图:矩形;左视图:三角形;符合题意;故选D【题目点拨】本题考查几何体的三视图,难度低,熟练掌握各个几何体的三视图是解题关键.10、D【解题分析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A.不是轴对称图形,是中心对称图形,故此选项错误;B.不是轴对称图形,是中心对称图形,故此选项错误;C.是轴对称图形,也是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据题意,由AAS证明△AEH≌△BFE,则BE=AH,根据相似比为,令EH=,AB=,设AE=,AH=,在直角三角形AEH中,利用勾股定理,即可求出的值,即可得到答案.【题目详解】解:在正方形EFGH与正方形ABCD中,∠A=∠B=90°,EF=EH,∠FEH=90°,∴∠AEH+∠AHE=90°,∠BEF+∠AEH=90°,∴∠AHE=∠BEF,∴△AEH≌△BFE(AAS),∴BE=AH,∵,令EH=,AB=,在直角三角形AEH中,设AE=,AH=AB-AE=,由勾股定理,得,即,解得:或,∵,∴,∴,∴;故答案为:.【题目点拨】本题考查了相似四边形的性质,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是利用勾股定理求出AE和BE的长度.12、3【分析】根据同一时刻物高与影长成正比可得出结论.【题目详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=2.5尺,∴,解得x=3(尺).故答案为:3.【题目点拨】本题考查的是同一时刻物高与影长成正比,在解题时注意单位要统一.13、<【分析】设BP与圆交于点D,连接AD,根据同弧所对的圆周角相等,可得∠ACB=∠ADB,然后根据三角形外角的性质即可判断.【题目详解】解:设BP与圆交于点D,连接AD∴∠ACB=∠ADB∵∠ADB是△APD的外角∴∠ADB>∴<∠ACB故答案为:<.【题目点拨】此题考查的是圆周角定理的推论和三角形外角的性质,掌握同弧所对的圆周角相等和三角形的外角大于任何一个与它不相邻的内角是解决此题的关键.14、【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可求出x的最大值【题目详解】∵二次根式有意义;∴3-4x≥0,解得x≤,∴x的最大值为;故答案为.【题目点拨】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.15、【分析】以A为坐标原点建立坐标系,求出其它两点的坐标,用待定系数法求解析式即可.【题目详解】解:以A为原点建立坐标系,则A(0,0),B(12,0),C(6,4)设y=a(x-h)2+k,∵C为顶点,∴y=a(x-6)2+4,把A(0,0)代入上式,36a+4=0,解得:,∴;故答案为:.【题目点拨】本题主要考查了待定系数法求二次函数解析式,恰当的选取坐标原点,求出各点的坐标是解决问题的关键.16、.【题目详解】解:由题意作出树状图如下:一共有36种情况,“两枚骰子朝上的点数互不相同”有30种,所以,P=.考点:列表法与树状图法.17、100【解题分析】试题分析:先作出图象,根据含30°角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解.如图,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面积考点:本题考查的是三角形外角的性质,含30°角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;30°角的所对的直角边等于斜边的一半.18、【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【题目详解】由图可知,黑色方砖6块,共有16块方砖,
∴黑色方砖在整个地板中所占的比值,
∴小球最终停留在黑色区域的概率是,故答案为:.【题目点拨】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.三、解答题(共66分)19、(1)1;(2)图见解析;(3)图象关于轴对称(或函数有最小值,答案不唯一);(4).【分析】(1)把x=-2代入函数解释式即可得m的值;
(2)描点、连线即可得到函数的图象;
(3)根据函数图象得到函数y=x2-2|x|的图象关于y轴对称;当x>1时,y随x的增大而增大;
(4)根据函数的图象即可得到a的取值范围-1<a<1.【题目详解】(1)把x=−2代入y=x2−2|x|得y=1,即m=1,故答案为:1;(2)如图所示;(3)由函数图象知:函数y=x2−2|x|的图象关于y轴对称(或函数有最小值,答案不唯一);(4)由函数图象知:∵关于x的方程x2−2|x|=a有4个实数根,∴a的取值范围是−1<a<1,故答案为:−1<a<1.【题目点拨】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,数形结合是解题的关键.20、(1);(2)当销售单价为180元,年获利最大,并且第一年年底公司亏损了,还差40万元就可收回全部投资.【分析】(1)销售单价为x元,先用x表示出年销售量,再利用每件产品销售利润×年销售量=年获利列出函数解答;(2)把(1)中所得的二次函数,利用配方法得到顶点式,然后进行判断,即可得到答案.【题目详解】解:(1)由题意知,当销售单价定为元时,年销售量减少万件,∴,∴与之间的函数关系式是:.由题意得:,∴与之间的函数关系是:.(2)∵,∵,∴当时,取最大值,为,∴当销售单价为180元,年获利最大,并且第一年年底公司还差40万元就可收回全部投资;∴到第一年年底公司亏了40万元.【题目点拨】此题考查了二次函数的性质,二次函数的应用问题,配方法的运用,解题的关键是熟练掌握题意,正确找到题目的数量关系,列出关系式.21、(1)详见解析;(1)【分析】(1)连接OC,由角平分线的定义和等腰三角形的性质,得,从而得l⊥OC,进而即可得到结论;(1)由圆的内接四边形的性质和圆周角定理的推论,得△ABE是等腰直角三角形,通过勾股定理得的长,从而求出,连接OE,求出,进而即可求解.【题目详解】(1)连接OC,∵,∴,∵∠DAC=∠BAC,∴,∵在Rt△ADC中∠DAC+∠ACD=90°,∴,即直线l⊥OC,∴直线l是⊙O的切线;(1)∵四边形ACEB内接于圆,∴,又∵直径AB所对圆周角,∴△ADC与△ABE都是等腰直角三角形,∴,∴,∵,连接OE,则,∴,∴图中阴影部分面积=.【题目点拨】本题主要考查圆周角定理的推论,圆内接四边形的性质,勾股定理,等腰直角三角形的性质以及扇形的面积公式,熟练掌握圆内接四边形的对角互补以及和扇形的面积公式,是解题的关键.22、(1)A种粽子单价为4元/个,B种粽子单价为4.1元/个;(2)A种粽子最多能购进100个【分析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量=总价÷单价结合用4100元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A种粽子m个,则购进B种粽子(1100﹣m)个,根据总价=单价×数量结合总价不超过1000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【题目详解】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:=1100,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.2x=4.1.答:A种粽子单价为4元/个,B种粽子单价为4.1元/个.(2)设购进A种粽子m个,则购进B种粽子(1100﹣m)个,依题意,得:4m+4.1(1100﹣m)≤1000,解得:m≤100.答:A种粽子最多能购进100个.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(1)0.6万元;(2)2元【分析】(1)根据利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用,即可求出结论;(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,根据第二个月的利润为3.4万元,即可得出关于x的一元二次方程,即可求解.【题目详解】(1)(6﹣4)×12000﹣3500×6﹣9000=6000(元),6000元=0.6万元.答:小王他们第一个月可以偿还0.6万元的无息贷款.(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,依题意,得:(x﹣4)[12000﹣1000(x﹣6)]﹣3500×6﹣9000=34000,整理,得:x2﹣22x+160=0,解得:x1=2,x2=1.∵4×250%=10,1>10,∴x=2.答:他们应该将该电子产品的销售单价定为2元.【题目点拨】本题主要考查一元二次方程的实际应用,根据“利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用”,列出方程,是解题的关键.24、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时,S=t2;②当点C′在CB的延长线上,S=−t2+t−;③当点E在x轴负半轴,S=t2−4t+1.【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【题目详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=时,B和C′点重合,如图1所示,此时S=×CE•OB=,∴CE=,∴BE=.∵OB=2,∴OE=,∴OC=OE+EC=+=4,BC=,CD=,÷=1(单位长度/秒),∴点D的运动速度为1单位长度/秒,点C坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t=k时,点D与点B重合,此时k==2;当t=m时,点E和点O重合,如图2所示.sin∠C===,cos∠C=,OD=OC•sin∠C=4×=,CD=OC•cos∠C=4×=.∴m==,n=BD•OD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科学计算语言Julia及MWORKS实践 课件 24-面向自定义图形的对象设置
- 艾滋病易感人群
- 二零二四年度承包合同:大型水电工程承包协议(2024版)3篇
- 2024年图书室工作总结怎么写
- 道路排水改造工程施工设计方案技术标范本
- 脑梗塞患者的护理措施
- 二零二四年度互联网技术与服务合同标的及合同服务内容扩展3篇
- 核酸检测培训宣传
- 财务行业新员工培训
- 新东方助教培训
- 仓库火灾事故保险追偿实务
- 经典柴油加氢技术
- 纪委约谈表格_4961
- 农药英语词汇
- 高危作业事故案例
- 精益生产评价打分表
- 千字文(简体、繁体、注音版)
- 8D报告(完整详解版)
- 新生儿呼吸窘迫综合征教案
- 敏捷开发介绍(精选干货)
- 农产品仓储建设项目可行性研究报告
评论
0/150
提交评论