版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第32讲数列的综合问题基础知识1.数列的综合应用(1)等差数列和等比数列的综合等差数列与等比数列相结合的综合问题主要是应用等差、等比数列的通项公式、前n项和公式,建立关于两个基本量,即首项a1和公差d或公比q的方程组,以及解决等差中项、等比中项等问题.(2)数列和函数数列是特殊的函数,等差数列的通项公式和前n项和公式分别是关于n的一次函数和二次函数,等比数列的通项公式和前n项和公式在公比不等于1的情况下是公比q的指数型函数,可以根据函数的性质解决一些数列问题.(3)数列和不等式以数列为背景的不等式证明问题及以函数为背景的数列的综合问题,体现了在知识交汇点上命题的特点.这类问题一般通过数列求通项以及求和去解决一个不等式问题,这里的不等式通常是关于正整数的不等式,可以通过比较法、基本不等式法、导数方法和数学归纳法解决.2.数列应用题常见模型等差数列模型如果增加(或减少)的量是一个固定量时,该模型是等差数列模型,增加(或减少)的量就是公差等比数列模型如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列模型,这个固定的数就是公比递推数列模型如果题目中给出的前后两项之间的关系不固定,即随着项的变化而变化时,应考虑an与an1的递推关系,或前n项和Sn与Sn1之间的递推关系分类探究探究点一等差、等比数列的综合问题例1在①b1+b3=a2,②a4=b4,③S5=25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{an}的前n项和为Sn,{bn}是等比数列,,b1=a5,b2=3,b5=81,是否存在k,使得Sk>Sk+1且Sk+1<Sk+2?
注:如果选择多个条件分别解答,那么按第一个解答计分.[总结反思]解决由等差数列、等比数列组成的综合问题,首先要根据两数列的概念,设出相应的基本量,然后充分使用通项公式、求和公式、数列的性质等确定基本量.解综合问题的关键在于审清题目,弄懂来龙去脉,揭示问题的内在联系和隐含条件.变式题已知等差数列{an}的公差为d,Sn是数列{an}的前n项和,等比数列{bn}的公比为q(q≠1),Tn是数列{bn}的前n项和,a3+b3=0,b1=1,T3=3,d=q.(1)求数列{bn}的通项公式.(2)是否存在正整数λ,使得关于k的不等式λ(30+Sk)≤10有解?若存在,求出λ的值;若不存在,说明理由.探究点二数列在实际生活中的应用例2(1)我国《车辆驾驶人员血液、呼气酒精含量阈值与检验》规定:车辆驾驶人员100mL血液中酒精含量在[20,80)(单位:mg)内为饮酒后驾车,80mg及以上认定为醉酒后驾车.某人喝了一定量的酒后,其血液中的酒精含量上升到0.8mg/mL,此时他停止饮酒,其血液中的酒精含量以每小时20%的速度减少,为避免酒后驾车,他至少经过n小时才能开车,则n的最小整数值为 ()A.5 B.6 C.7 D.8(2)一对夫妇为了给他们的独生子支付将来上大学的费用,从孩子1周岁生日开始,每年到银行储蓄a元一年定期,若年利率为r保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18周岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为 ()A.a(1+r)17 B.ar[(1+r)17(1+r)]C.a(1+r)18 D.ar[(1+r)18(1+r[总结反思]解决实际问题所涉及的数列模型:首先要认真阅读领悟,学会翻译(数学化);其次再考虑用熟悉的数列知识建立数学模型,求出问题的解;最后还需验证求得的解是否符合实际.变式题(1)某大学毕业生为自主创业于2017年8月初向银行贷款240000元,与银行约定按“等额本金还款法”分10年进行还款,从2017年9月初开始,每个月月初还一次款,贷款月利率为0.5%,现因经营状况良好准备向银行申请提前还款,计划于2022年8月初将剩余贷款全部一次还清,则该大学毕业生按现计划的所有还款数额比按原约定所有还款数额少 ()(注:“等额本金还款法”是将本金平均分配到每一期进行偿还,每一期所还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘利率.1年按12个月计算)A.18000元 B.18300元C.28300元 D.36300元(2)当急需住院人数等于或大于医院所能收治的病人数量时就会发生“医疗资源挤兑”现象.在新冠肺炎爆发期间,境外某市每日下班后统计住院人数,从中发现:该市每日因新冠肺炎住院人数均比前一天下班后统计的住院人数增加约25%,但每日大约有200名新冠肺炎患者治愈出院.已知该市某天下班后有1000名新冠肺炎患者住院治疗,该市的医院共可收治4000名新冠肺炎患者.若继续按照这样的规律发展,该市因新冠肺炎疫情发生“医疗资源挤兑”现象,只需要约 ()A.7天 B.10天C.14天 D.16天探究点三数列与函数、不等式的综合问题角度1数列与不等式的综合例3已知数列{an}为递增的等差数列,其中a3=5,且a1,a2,a5成等比数列.(1)求{an}的通项公式;(2)设bn=1(an+1)(an+1+1),记数列{bn}的前n项和为Tn[总结反思]数列中不等式的恒成立问题:以数列为背景的不等式恒成立问题,多与数列求和相联系,求解的思路一般有两种,一是求和后直接利用基本不等式求解数列中的最值,二是求和后抓住和式的特征,利用函数的思想,借助数列的单调性求解,此时需注意变量的取值范围.变式题已知正项数列{an}满足2Sn=an+1,其中Sn为{an}的前n项和(1)求{an}的通项公式;(2)已知bn=(1)n+1·an+1anan+1,求数列{bn}的前n项和Tn,并求出Tn≥m2+m5角度2数列与函数的综合例4定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,例如:[1.3]=1,[1.5]=2,[2]=2.当x∈[0,n)(n∈N*)时,f(x)的值域为An.记集合An中元素的个数为an,则∑i=22020[总结反思]数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图像来解决;②已知数列条件,解决函数问题,此类问题一般要充分利用数列的范围、公式、求和方法对所给条件化简变形.变式题定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=x3+3x1;当x≥2时,f(x)=3f(x2).记函数f(x)的极大值点从小到大依次记为a1,a2,…,an,…,并记相应的极大值为b1,b2,…,bn,…,则a1·b1+a2·b2+…+a18·b18的值为 ()A.18×319+1 B.18×318+1C.17×317+1 D.17×318+1同步作业1.已知数列{an}既是公差为d的等差数列又是公比为q的等比数列,首项a1=1,则它的前2020项的和等于 ()A.1B.2021a1+2021×1110dC.2020D.02.如果一个数列由有限个连续的正整数按从小到大的顺序组成(数列的项数大于2),且所有项之和为N,那么称该数列为“N型标准数列”.例如,数列3,4,5,6,7为“25型标准数列”,则“5336型标准数列”的个数为 ()A.2 B.3C.4 D.53.某家庭决定要进行一项投资活动,预计每周收益1%.假设起始投入1万元,按照复利(复利是指每经过一个计息期后,都将所得利息加入本金,以计算下期的利息)计算,经过100周,该家庭在此项投资活动中的资产总额大约为 ()A.1.3万元 B.1.7万元C.2.3万元 D.2.7万元4.已知正项等比数列{an}的首项a1=1,前n项和为Sn,且S1,S2,S32成等差数列,则a5= ()A.8 B.1C.16 D.15.已知等比数列{an}中,a2a14=8a8,数列{bn}是等差数列,其前n项和为Sn,且a8=b8,则S15= ()A.30 B.60C.120 D.2406.已知集合M={1,2,3,…,10},集合A⊆M,定义N(A)为A中元素的最小值,当A取遍M的所有非空子集时,对应的N(A)的和记为S,则S= ()A.45 B.1012C.2036 D.92177.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.令bn=1anan+1,则数列{bn}的前50项和8.假设你有一笔资金,现有三种投资方案,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.现打算投资10天,三种投资方案的总收益分别为A10,B10,C10,则 ()A.A10<B10<C10 B.A10<C10<B10C.B10<A10<C10 D.C10<A10<B109.设等差数列{an}的前n项和为Sn,公差d>0,a6和a8是函数f(x)=154lnx+12x28x的两个极值点,则S8= (A.38 B.38C.17 D.1710.设{an}是公比为q(q>0)的等比数列,首项a1=164,bn=log12an,当且仅当n=4时,数列{bn}的前n项和取得最大值,则q的取值范围为 A.(3,23) B.(3,4)C.(22,4) D.(22,32)11.(多选题)已知数列{an}中,a1=1,an+11n=(1+1n)an,n∈N*.若对于任意的t∈[1,2],不等式ann<2t2(a+1)t+a2a+2恒成立,则实数a可能为A.4 B.2C.0 D.212.(多选题)已知等比数列{an}的公比q=23,等差数列{bn}的首项b1=12,若a9>b9且a10>b10,则以下结论正确的是 (A.a9·a10<0 B.a9>a10C.b10>0 D.b9>b1013.已知数列{an}的前n项和为Sn=2n+12,bn=log2(an2·2an),数列{bn}的前n项和为Tn,若Tn>1024,则正整数14.在①S3a4=6,②a3=2a1+a2,③S6=42这三个条件中任选一个,补充在下面问题中,若问题中的k存在,则求出{an}的通项公式;若不存在,请说明理由.问题:数列{an}的各项均为正数,其前n项和为Sn,是否存在正数k,使得an2+kan=2kSn,且15.设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn.已知a1b1=2,S2=6,S3=12,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版个人住房贷款担保合同汇编2篇
- 二零二五年度高效节水灌溉与机耕一体化服务合同3篇
- 医疗器械2025年度信息安全与隐私保护合同3篇
- 二零二五年度车辆抵押担保担保公司服务合同范本3篇
- 基于二零二五年度的智能家居技术服务合同2篇
- 二零二五版EPS线条工程节能评估与认证合同3篇
- 二零二五版桉树种植抚育及产品回收合同3篇
- 二零二五年度特色餐厅股权置换合同协议书3篇
- 二零二五年度航空货运服务保障合同3篇
- 二零二五版锅炉安全检查与安装服务合同范本3篇
- 稽核管理培训
- 电梯曳引机生锈处理方案
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
评论
0/150
提交评论