浙江省宁波市同济中学高二数学文上学期期末试卷含解析_第1页
浙江省宁波市同济中学高二数学文上学期期末试卷含解析_第2页
浙江省宁波市同济中学高二数学文上学期期末试卷含解析_第3页
浙江省宁波市同济中学高二数学文上学期期末试卷含解析_第4页
浙江省宁波市同济中学高二数学文上学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市同济中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A. B. C. D.参考答案:B【考点】C9:相互独立事件的概率乘法公式.【分析】利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.【解答】解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.故选:B.2.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A. B. C. D.参考答案:B【考点】函数的图象.【分析】根据导数的图象,利用函数的单调性和导数的关系,得出所选的选项.【解答】解:由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.3.已知,则A. B. C. D.参考答案:C【分析】根据已知求出,再求.【详解】因为,故,从而.故选:C【点睛】本题主要考查诱导公式和同角的三角函数关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.4.设,且恒成立,则的最大值是(

)A.

B.

C.

D.参考答案:C略5.执行如图所示的程序框图,输出的值为(

)A.

B.

C.

D.参考答案:C6.直线2x﹣y﹣3=0的倾斜角为θ,则tanθ=()A. B. C.2 D.﹣2参考答案:C【考点】直线的倾斜角.【分析】根据直线的斜率公式计算即可,【解答】解:∵直线2x﹣y﹣3=0的倾斜角为θ,则tanθ,∴tanθ=k=2.故选:C7.如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是()A.ab>ac B.c(b﹣a)>0 C.cb2<ab2 D.ac(a﹣c)<0参考答案:C【考点】不等关系与不等式.【分析】本题根据c<b<a,可以得到b﹣a与a﹣c的符号,当a>0时,则A成立,c<0时,B成立,又根据ac<0,得到D成立,当b=0时,C不一定成立.【解答】解:对于A,∵c<b<a且ac<0,∴则a>0,c<0,必有ab>ac,故A一定成立对于B,∵c<b<a∴b﹣a<0,又由c<0,则有c(b﹣a)>0,故B一定成立,对于C,当b=0时,cb2<ab2不成立,当b≠0时,cb2<ab2成立,故C不一定成立,对于D,∵c<b<a且ac<0∴a﹣c>0∴ac(a﹣c)<0,故D一定成立故选C.8.圆心在曲线上,且与直线3x+4y+3=0相切的面积最小的圆的方程为()A. B.C. D.参考答案:A【考点】圆的标准方程.【专题】计算题.【分析】设圆心为(a,),a>0,圆心到直线的最短距离为:=|3a++3|=r,|3a++3|=5r,由a>0,知3a++3=5r,欲求面积最小的圆的方程,即求r最小时a和r的值,由此能求出面积最小的圆的方程.【解答】解:设圆心为(a,),a>0,圆心到直线的最短距离为:=|3a++3|=r,(圆半径)∴|3a++3|=5r,∵a>0,∴3a++3=5r,欲求面积最小的圆的方程,即求r最小时a和r的值,∵5r=3a++3≥2+3=15,∴r≥3,当3a=,即a=2时,取等号,∴面积最小的圆的半径r=3,圆心为(2,)所以面积最小的圆的方程为:(x﹣2)2+(y﹣)2=9.故选A.【点评】本题考查圆的标准方程的求法,考查点到直线的距离公式和圆的性质的应用,解题时要认真审题,仔细解答,注意均值定理的灵活运用.9.直线的倾斜角为 (

)A.

B.

C.

D.参考答案:A10.已知是定义在上的偶函数,且,则为上的增函数是为上是减函数的()A.既不充分也不必要条件

B.充分不必要条件

C.必要不充分条件

D.充要条件参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知角2α的终边落在x轴下方,那么α是第

象限角.参考答案:二或四

12.在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的侧面爬行一周后又回到A点,则蚂蚁爬过的最短路程为___▲_;参考答案:略13.观察下列不等式:①;②;③;…则第个不等式为

.参考答案:

略14.函数(其中…是自然对数的底数)的极值点是________;极大值=________.参考答案:1或-2

【分析】对求导,令,解得零点,验证各区间的单调性,得出极大值和极小值.【详解】解:由已知得

,令,可得或,

当时,即函数在上单调递增;

当时,,即函数在区间上单调递减;

当时,,即函数在区间上单调递增.

故的极值点为-2或1,且极大值为.

故答案为:1或-2

.【点睛】本题考查了利用导函数求函数极值问题,是基础题.

15.已知的展开式中各项系数和为2,则其展开式中含x项的系数是_______.参考答案:9【分析】令,可得:,解出的值,再利用通项公式即可得到答案。【详解】由于的展开式中各项系数和为2,令,可得:,解得:,的展开式的通项公式,要得到展开式中含项的系数,则或,解得或4;所以展开式中含项的系数故答案为:916.已知向量.若与共线,则在方向上的投影为________.参考答案:【分析】利用共线向量的坐标表示求出参数,再依据投影的概念求出结果即可。【详解】∵∴.又∵与共线,∴,∴,∴,∴在方向上的投影为.【点睛】本题主要考查共线向量的坐标表示以及向量投影的概念,注意投影是个数量。

17.则常数T的值为

.参考答案:3

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆过点,离心率是,(1)求椭圆C的标准方程;(2)若直线l与椭圆C交于A、B两点,线段AB的中点为求直线l与坐标轴围成的三角形的面积.参考答案:(1)(2)试题分析:(1)利用点在椭圆上、离心率进行求解;(2)先利用点差法求出直线的斜率,再写出直线的点斜式方程,再分别求出该直线在坐标轴上的截距,利用三角形的面积公式进行求解.试题解析:(1)由已知可得,

,

解得,

∴椭圆的方程为(2)设、代入椭圆方程得,两式相减得,由中点坐标公式得,∴可得直线的方程为令可得令可得则直线与坐标轴围成的三角形面积为.19.人们生活水平的提高,越来越注重科学饮食.营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,每天需要同时食用食物A和食物B多少kg?最低花费是多少? 参考答案:【考点】简单线性规划的应用. 【专题】计算题;数形结合;不等式的解法及应用. 【分析】利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.本题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解. 【解答】解:设每天食用xkg食物A,ykg食物B,总花费为z元,那么 则目标函数为z=28x+21y,且x,y满足约束条件 ,…(3分) 整理,…(5分) 作出约束条件所表示的可行域, 如右图所示.…(7分) 将目标函数z=28x+21y变形. .如图,作直线28x+21y=0,当直线平移经过可行域,在过点M处时,y轴上截距最小,即此时z有最小值.…(9分) 解方程组,得点M的坐标为.…(11分) ∴每天需要同时食用食物A约kg,食物B约kg.…(12分) 能够满足日常饮食要求,且花费最低16元.…(13分) 【点评】本题考查简单线性规划的应用,用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解. 20.已知函数f(x)=过点(1,e).(1)求y=f(x)的单调区间;(2)当x>0时,求的最小值.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)根据题意得出b的值,求出导函数,得出函数的单调区间;(2)构造函数)令g(x)=,求出导函数g'(x)=,根据导函数判断函数的极值即可.【解答】解:(1)函数定义域为{x|x≠0},f(1)=e,∴b=0,∴f(x)=,f'(x)=,当x≥1时,f'(x)≥0,函数递增;当x<0或0<x<1时,f'(x)<0,f(x)递减;∴函数的增区间为[1,+∞],减区间为(﹣∞,0),(0,1);(2)令g(x)=,g'(x)=,当在(0,2)时,g'(x)<0,g(x)递减;当在(2,+∞)时,g(x)>0,g(x)递增,∴g(x)=为函数的最小值.21.(本小题满分14分)已知椭圆的焦点在轴上,长轴长为,离心率为.(Ⅰ)求椭圆的标准

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论