2024届高三数学一轮复习第8练 正弦定理和余弦定理(解析版)_第1页
2024届高三数学一轮复习第8练 正弦定理和余弦定理(解析版)_第2页
2024届高三数学一轮复习第8练 正弦定理和余弦定理(解析版)_第3页
2024届高三数学一轮复习第8练 正弦定理和余弦定理(解析版)_第4页
2024届高三数学一轮复习第8练 正弦定理和余弦定理(解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第8练正弦定理和余弦定理一、单选题1.(2023秋·新疆乌鲁木齐·高二乌鲁木齐101中学校考开学考试)在中,已知,,,则(

)A.1 B. C. D.32.(2023·河南郑州·校联考二模)在中,,,,是的外接圆上的一点,若,则的最小值是(

)A. B. C. D.3.(2023·广东佛山·华南师大附中南海实验高中校考模拟预测)已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、右两支于A,B两点,点C在x轴上,,平分,则双曲线的离心率为(

)A. B. C. D.4.(2023·全国·高三专题练习)双曲线的左,右焦点分别为,过作垂直于轴的直线交双曲线于两点,的内切圆圆心分别为,则的面积是(

)A. B. C. D.5.(2023春·广东揭阳·高三校考阶段练习)已知的三个内角,,的对边分别为,,,且,则(

)A. B. C. D.6.(2023·全国·高一专题练习)在中,内角所对应的边分别是,若,,,则(

)A. B. C. D.7.(2023·全国·高三专题练习)设椭圆C:的左、右焦点分别为,,直线l过点.若点关于l的对称点P恰好在椭圆C上,且,则C的离心率为(

)A. B. C. D.8.(2023·宁夏银川·六盘山高级中学校考三模)椭圆的左、右焦点分别为,,过点的直线l交椭圆C于A,B两点,若,,则椭圆C的离心率为(

)A. B. C. D.二、多选题9.(2023·江苏南京·校考三模)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为(

)A. B. C. D.10.(2023·安徽六安·安徽省舒城中学校考模拟预测)平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的,已知在平面直角坐标系中,,,动点P满足,则下列结论正确的是(

)A.点的横坐标的取值范围是B.的取值范围是C.面积的最大值为D.的取值范围是11.(2023春·全国·高一专题练习)已知圆锥顶点为S,高为1,底面圆的直径长为.若为底面圆周上不同于的任意一点,则下列说法中正确的是(

)A.圆锥的侧面积为B.面积的最大值为C.圆锥的外接球的表面积为D.若,为线段上的动点,则的最小值为12.(2023春·全国·高一专题练习)的内角A,,的对边分别为a,b,c,下列说法正确的是(

)A.若,则B.若,则此三角形为等腰三角形C.若,,,则解此三角形必有两解D.若是锐角三角形,则13.(2023·江苏南京·南京市第五高级中学校考二模)如图,在棱长为4的正方体中,E,F,G分别为棱,,的中点,点P为线段上的动点,则(

)A.两条异面直线和所成的角为B.存在点P,使得平面C.对任意点P,平面平面D.点到直线的距离为414.(2023春·湖北襄阳·高三襄阳五中校考阶段练习)如图1,在中,,,,DE是的中位线,沿DE将进行翻折,连接AB,AC得到四棱锥(如图2),点F为AB的中点,在翻折过程中下列结论正确的是(

)A.当点A与点C重合时,三角形ADE翻折旋转所得的几何体的表面积为B.四棱锥的体积的最大值为C.若三角形ACE为正三角形,则点F到平面ACD的距离为D.若异面直线AC与BD所成角的余弦值为,则A、C两点间的距离为三、填空题15.(2023秋·四川成都·高二成都外国语学校校考阶段练习)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑中,平面,,,已知动点从点出发,沿外表面经过棱上一点到点的最短距离为,则该棱锥的外接球的体积为.16.(2023·广西桂林·校考模拟预测)△ABC中,角A,B,C所对的三边分别为a,b,c,c=2b,若△ABC的面积为1,则BC的最小值是.17.(2023·安徽安庆·安庆一中校考模拟预测)在中,,D为BC的中点,则的最大值为.18.(2023·四川眉山·校考三模)在锐角中,内角A,B,C所对应的边分别是a,b,c,且,则的取值范围是.四、解答题19.(2023秋·甘肃临夏·高三统考期末)记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知.(1)求的面积;(2)若,求b.20.(2023春·云南红河·高一开远市第一中学校校考阶段练习)记的内角的对边分别为,已知.(1)证明:;(2)若,求的周长.参考答案:1.D【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.【详解】设,结合余弦定理:可得:,即:,解得:(舍去),故.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.2.B【分析】先解三角形得到为直角三角形,建立直角坐标系,通过表示出,借助三角函数求出最小值.【详解】由余弦定理得,所以,所以,所以.以AC的中点为原点,建立如图所示的平面直角坐标系,易得A(-1,0),C(1,0),B(-,),设P的坐标为,所以,,,又,所以,所以,,所以,当且仅当时,等号成立.故选:B.3.A【分析】根据可知,再根据角平分线定理得到的关系,再根据双曲线定义分别把图中所有线段用表示出来,根据边的关系利用余弦定理即可解出离心率.【详解】因为,所以∽,设,则,设,则,.因为平分,由角平分线定理可知,,所以,所以,由双曲线定义知,即,,①又由得,所以,即是等边三角形,所以.在中,由余弦定理知,即,化简得,把①代入上式得,所以离心率为.故选:A.4.A【分析】由题意画出图,由已知求出的值,找出的坐标,由的内切圆圆心分别为,进行分析,由等面积法求出内切圆的半径,从而求出的底和高,利用三角形的面积公式计算即可.【详解】由题意如图所示:由双曲线,知,所以,所以,所以过作垂直于轴的直线为,代入中,解出,由题知的内切圆的半径相等,且,的内切圆圆心的连线垂直于轴于点,设为,在中,由等面积法得:由双曲线的定义可知:由,所以,所以,解得:,因为为的的角平分线,所以一定在上,即轴上,令圆半径为,在中,由等面积法得:,又所以,所以,所以,,所以,故选:A.5.B【分析】根据题意,利用正弦定理边化角,由三角形内角和定理,展开化简得.【详解】由,边化角得,又,所以,展开得,所以,因为,所以.故选:B.6.D【分析】利用余弦定理直接构造方程求解即可.【详解】由余弦定理得:,即,解得:(舍)或,.故选:D.7.C【分析】根据已知结合椭圆的定义可推得,.然后根据,可推得.最后根据余弦定理,即可得到关于的齐次方程,即可得出离心率.【详解】设,由已知可得,,根据椭圆的定义有.又,所以.在中,由余弦定理可得,,即,整理可得,等式两边同时除以可得,,解得,或(舍去),所以.故选:C.8.D【分析】由椭圆的定义及题设,求出、、,利用,由余弦定理建立方程化简即可得解.【详解】因为,由椭圆定义知,又,所以,再由椭圆定义,因为,所以,所以由余弦定理可得,即,化简可得,即,解得或(舍去).故选:D9.AC【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.【详解】[方法一]:几何法,双曲线定义的应用情况一

M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,所以,因为,所以在双曲线的左支,,,,设,由即,则,选A情况二若M、N在双曲线的两支,因为,所以在双曲线的右支,所以,,,设,由,即,则,所以,即,所以双曲线的离心率选C[方法二]:答案回代法特值双曲线,过且与圆相切的一条直线为,两交点都在左支,,,则,特值双曲线,过且与圆相切的一条直线为,两交点在左右两支,在右支,,,则,[方法三]:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,若分别在左右支,因为,且,所以在双曲线的右支,又,,,设,,在中,有,故即,所以,而,,,故,代入整理得到,即,所以双曲线的离心率若均在左支上,同理有,其中为钝角,故,故即,代入,,,整理得到:,故,故,故选:AC.10.BC【分析】设出点P的坐标,列出方程并化简整理,放缩解不等式判断A;利用几何意义并结合求函数值域判断B;利用三角形面积公式计算判断C;取点计算判断D作答.【详解】设点,依题意,,对于A,,当且仅当时取等号,解不等式得:,即点的横坐标的取值范围是,A错误;对于B,,则,显然,因此,B正确;对于C,的面积,当且仅当时取等号,当时,点P在以线段MN为直径的圆上,由解得,所以面积的最大值为,C正确;对于D,因为点在动点P的轨迹上,当点P为此点时,,D错误.故选:BC【点睛】易错点睛:求解轨迹方程问题,设出动点坐标,根据条件求列出方程,再化简整理求解,还应特别注意:补上在轨迹上而坐标不是方程解的点,剔出不在轨迹上而坐标是方程解的点.11.BCD【分析】对A:根据圆锥的侧面积公式分析运算;对B:根据题意结合三角形的面积公式分析运算;对C:根据题意可得圆锥的外接球即为的外接圆,利用正弦定理求三角形的外接圆半径,即可得结果;对D:将平面与平面展开为一个平面,当三点共线时,取到最小值,结合余弦定理分析运算.【详解】对A:由题意可知:,故圆锥的侧面积为,A错误;对B:面积,在中,,故为钝角,由题意可得:,故当时,面积的最大值为,B正确;对C:由选项B可得:,为钝角,可得,由题意可得:圆锥的外接球半径即为的外接圆半径,设其半径为,则,即;故圆锥的外接球的表面积为,C正确;对D:将平面与平面展开为一个平面,如图所示,当三点共线时,取到最小值,此时,在,,则为锐角,则,在,则,由余弦定理可得,则,故的最小值为,D正确.故选:BCD.12.AD【分析】由正弦定理可求A,然后可判断A;根据角的范围直接求解可判断B;正弦定理直接求解可判断C;利用诱导公式和正弦函数单调性可判断D.【详解】由正弦定理可知,又,所以,可得,因为,所以,A正确;因为,且角2A,2最多有一个大于,所以由可知,或,即或,所以为等腰三角形或直角三角形,故B错误;由正弦定理可得,因为,所以,故此三角形有唯一解,C错误;因为是锐角三角形,所以,即,又在上单调递增,所以,同理,所以,D正确.故选:AD13.BCD【分析】根据异面直线所成角的概念结合正方体的性质可判断A,根据线面平行的判定定理可判断B,根据线面垂直的判定定理可得平面,然后根据线线垂直的判定定理可判断C,利用余弦定理结合条件可判断D.【详解】对于A,由正方体的性质可知,两条异面直线和所成的角即为,所以A错误;对于B,当点P与点重合时,由题可知,所以,四边形为平行四边形,故,又平面,平面,则平面,所以B正确;对于C,连结,由于平面,平面,故,又,故,故,即,故,又相交,平面,故平面,又平面,故对任意点,平面平面,所以C正确;对于D,由正方体的性质可得,,所以,所以,所以点到直线的距离,所以D正确.故选:BCD.14.ABD【分析】A项,分析点A与点C重合时三角形ADE翻折旋转所得的几何体类型,即可得到几何体的表面积;B项,通过表达出的体积,即可求出四棱锥的体积的最大值;C项,通过三角形的等面积法即可求出点F到平面ACD的距离;D项,通过C项的三角形ACE为正三角形时,由余弦定理得到异面直线AC与BD所成角的余弦值为,即可求出异面直线AC与BD所成角的余弦值为时,A、C两点间的距离.【详解】由题意,在中,,,,DE是的中位线,∴,,,∴,,对于A项,当点A与点C重合时,三角形ADE翻折旋转所得的几何体为以2为半径高为1的半个圆锥,∴三角形ADE翻折旋转所得的几何体的表面积为:,故A正确;对于B项,设,则,设点到的距离为,则,∴四棱锥的体积为:,在中,,∴,∴四棱锥的体积的最大值为,故B正确;对于C,D项,当三角形ACE为正三角形时,,,过点作,连接,取的中点,连接,,在中,,点F为AB的中点,由几何知识得,,在中,,∴,为的中点,在中,为的中点,,点F为AB的中点,∴,,,在中,在四边形中,由几何知识得,,,∴四边形是矩形,,设点F到平面ACD的距离为,在中,,即,解得:,故C错误,由几何知识得,,,∴,此时即为异面直线AC与BD所成的角,由余弦定理,,代入数据,解得:,∴异面直线AC与BD所成角的余弦值为,则A、C两点间的距离为,故D正确;故选:ABD.【点睛】本题考查几何体的表面积,体积,空间点到平面的距离,异面直线所成的角,余弦定理等,具有极强的综合性。15.【分析】将沿翻折到与共面得到平面四边形如图1所示,设,利用余弦定理求出,将三棱锥补成长方体如图2所示,该棱锥的外接球即为长方体的外接球,求出外接球的半径,即可求出其体积.【详解】解:将沿翻折到与共面得到平面四边形如图1所示,设,即,由题意得,在中,由余弦定理得即即,解得或(舍去),将三棱锥补成长方体如图2所示,该棱锥的外接球即为长方体的外接球,则外接球的半径,所以外接球的体积.故答案为:16.【分析】由三角形面积公式得到,利用角A的三角函数表达出,利用数形结合及的几何意义求出最值.【详解】因为△ABC的面积为1,所,可得,由,可得,设,其中,因为表示点与点(cosA,sinA)连线的斜率,如图所示,当过点P的直线与半圆相切时,此时斜率最小,在直角△OAP中,,可得,所以斜率的最小值为,所以m的最大值为,所以,所以,即BC的最小值为,故答案为:.【点睛】解三角形中最值问题,要结合基本不等式,导函数或者数形结合,利用代数式本身的几何意义求解.17.【分析】先设,由三角形三边关系得到,再利用三角函数的诱导公式与余弦定理得到,从而利用换

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论