陕西省汉中学市镇巴县2024届数学九上期末达标测试试题含解析_第1页
陕西省汉中学市镇巴县2024届数学九上期末达标测试试题含解析_第2页
陕西省汉中学市镇巴县2024届数学九上期末达标测试试题含解析_第3页
陕西省汉中学市镇巴县2024届数学九上期末达标测试试题含解析_第4页
陕西省汉中学市镇巴县2024届数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省汉中学市镇巴县2024届数学九上期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b>解集为()A.x>2或﹣1<x<0 B.﹣1<x<0C.﹣1<x<0或0<x<2 D.x>22.二次函数的图象如图,若一元二次方程有实数解,则k的最小值为A. B. C. D.03.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是()A.40° B.80° C.100° D.120°4.二次函数的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下 B.抛物线与轴有两个交点C.抛物线的对称轴是直线=1 D.抛物线经过点(2,3)5.若关于的一元二次方程有实数根,则的取值范围()A. B. C.且 D.且6.四边形内接于⊙,点是的内心,,点在的延长线上,则的度数为()A.56° B.62° C.68° D.48°7.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5 B.10 C.20 D.408.方程是关于x的一元二次方程,则m的值是()A. B.C. D.不存在9.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.10.把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点,且另三个锐角顶点在同一直线上,若,则的长是()A. B. C.0.5 D.二、填空题(每小题3分,共24分)11.方程2x2-6x-1=0的负数根为___________.12.地物线的部分图象如图所示,则当时,的取值范围是______.13.如图,已知二次函数顶点的纵坐标为,平行于轴的直线交此抛物线,两点,且,则点到直线的距离为__________14.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有_____只虾.15.如图,C为半圆内一点,O为圆心,直径AB长为1cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.16.如图,在正方形ABCD的外侧,作等边△ABE,则∠BFC=_________°17.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为_________m.18.如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,则线段BF=______.三、解答题(共66分)19.(10分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?20.(6分)在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.21.(6分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)22.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.23.(8分)如图,在△中,,,点从点出发,沿以每秒的速度向点运动,同时点从点出发,沿以的速度向点运动,设运动时间为秒(1)当为何值时,.(2)当为何值时,∥.(3)△能否与△相似?若能,求出的值;若不能,请说明理由.24.(8分)如图,已知线段与点,若在线段上存在点,满足,则称点为线段的“限距点”.(1)如图,在平面直角坐标系中,若点.①在中,是线段的“限距点”的是;②点是直线上一点,若点是线段的“限距点”,请求出点横坐标的取值范围.(2)在平面直角坐标系中,点,直线与轴交于点,与轴交于点.若线段上存在线段的“限距点”,请求出的取值范围.25.(10分)一节数学课后,老师布置了一道课后练习题:如图1,是的直径,点在上,,垂足为,,分别交、于点、.求证:.图1图2(1)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)如图2,若点和点在的两侧,、的延长线交于点,的延长线交于点,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若,,求的长.26.(10分)“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.(1)求购进一件甲种礼品、一件乙种礼品各需多少元;(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x的取值范围即可.【题目详解】解:由图可知,x>2或﹣1<x<0时,ax+b>.故选A.【题目点拨】本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键.2、A【解题分析】∵一元二次方程ax2+bx+k=0有实数解,∴可以理解为y=ax2+bx和y=−k有交点,由图可得,−k≤4,∴k≥−4,∴k的最小值为−4.故选A.3、C【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【题目详解】解:∵四边形ABCD内接于⊙O,

∴∠C+∠A=180°,

∵∠A=80°,

∴∠C=100°,

故选:C.【题目点拨】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.4、B【题目详解】A、a=2,则抛物线y=2x2-3的开口向上,所以A选项错误;B、当y=0时,2x2-3=0,此方程有两个不相等的实数解,即抛物线与x轴有两个交点,所以B选项正确;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当x=2时,y=2×4-3=5,则抛物线不经过点(2,3),所以D选项错误,故选B.5、D【分析】根据一元二次方程的定义和根的判别式得出且,求出即可.【题目详解】∵关于的一元二次方程有实数根,

∴且,

解得:1且,

故选:D.【题目点拨】本题考查了一元二次方程的定义和根的判别式,能得出关于的不等式是解此题的关键.6、C【分析】由点I是的内心知,,从而求得,再利用圆内接四边形的外角等于内对角可得答案.【题目详解】∵点I是的内心∴,∵∴∵四边形内接于⊙∴故答案为:C.【题目点拨】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键.7、B【分析】利用圆锥面积=计算.【题目详解】=,故选:B.【题目点拨】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.8、B【分析】根据一元二次方程的定义进行求解即可.【题目详解】由题知:,解得,∴故选:B.【题目点拨】本题考查了利用一元二次方程的定义求参数的值,熟知一元二次方程的定义是解题的关键.9、B【解题分析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【题目详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.10、D【分析】过点D作BC的垂线DF,垂足为F,由题意可得出BC=AD=2,进而得出DF=BF=1,利用勾股定理可得出AF的长,即可得出AB的长.【题目详解】解:过点D作BC的垂线DF,垂足为F,由题意可得出,BC=AD=2,根据等腰三角形的三线合一的性质可得出,DF=BF=1利用勾股定理求得:∴故选:D.【题目点拨】本题考查的知识点是等腰直角三角形的性质,灵活运用等腰直角三角形的性质是解此题的关键.二、填空题(每小题3分,共24分)11、【分析】先计算判别式的值,再利用求根公式法解方程,然后找出负数根即可.【题目详解】△=(﹣6)2﹣4×2×(﹣1)=44,x==,所以x1=>1,x2=<1.即方程的负数根为x=.故答案为x=.【题目点拨】本题考查了公式法解一元二次方程:用求根公式解一元二次方程的方法是公式法.12、或【分析】根据二次函数的对称性即可得出二次函数与x轴的另一个交点为(3,0),当时,图像位于x轴的上方,故可以得出x的取值范围.【题目详解】解:由图像可得:对称轴为x=1,二次函数与x轴的一个交点为(-1,0)则根据对称性可得另一个交点为(3,0)∴当或时,故答案为:或【题目点拨】本题主要考查的是二次函数的对称性,二次函数的图像是关于对称轴对称的,掌握这个知识点是解题的关键.13、1【分析】设出顶点式,根据,设出B(h+3,a),将B点坐标代入,即可求出a值,即可求出直线l与x轴之间的距离,进一步求出答案.【题目详解】由题意知函数的顶点纵坐标为-3,可设函数顶点式为,因为平行于轴的直线交此抛物线,两点,且,所以可设B(h+3,a).将B(h+3,a)代入,得所以点B到x轴的距离是6,即直线l与x轴的距离是6,又因为D到x轴的距离是3所以点到直线的距离:3+6=1故答案为1.【题目点拨】本题考查了顶点式的应用,能根据题意设出顶点式是解答此题的关键.14、1.【分析】设该虾塘里约有x只虾,根据题意列出方程,解之可得答案.【题目详解】解:设此鱼塘内约有鱼x条,根据题意,得:=,解得:x=1,经检验:x=1是原分式方程的解,∴该虾塘里约有1只虾,故答案为:1.【题目点拨】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15、【分析】根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.【题目详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1则边BC扫过区域的面积为:故答案为.【题目点拨】考核知识点:扇形面积计算.熟记公式是关键.16、1【解题分析】根据正方形的性质及等边三角形的性质求出∠ADE=15°,∠DAC=45°,再求∠DFC,证△DCF≅△BCF,可得∠BFC=∠DFC.【题目详解】∵四边形ABCD是正方形,

∴AB=AD=CD=BC,∠DCF=∠BCF=45°

又∵△ABE是等边三角形,

∴AE=AB=BE,∠BAE=1°

∴AD=AE

∴∠ADE=∠AED,∠DAE=90°+1°=150°

∴∠ADE=(180°-150°)÷2=15°

又∵∠DAC=45°

∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF≅△BCF∴∠BFC=∠DFC=1°

故答案为:1.【题目点拨】本题主要是考查了正方形的性质和等边三角形的性质,本题的关键是求出∠ADE=15°.17、12【分析】根据某物体的实际高度:影长=被测物体的实际高度:被测物体的影长即可得出答案.【题目详解】设旗杆的高度为xm,∵∴故答案为12【题目点拨】本题主要考查相似三角形的应用,掌握某物体的实际高度:影长=被测物体的实际高度:被测物体的影长是解题的关键.18、【分析】连接,延长BA,CD交于点,根据∠BAD=∠BCD=90°可得点A、B、C、D四点共圆,根据圆周角定理可得,根据DE⊥AC可证明△AED∽△BCD,可得,利用勾股定理可求出AD的长,由∠ABC=45°可得△ABG为等腰直角三角形,进而可得△ADG是等腰直角三角形,即可求出AG、DG的长,根据BC=2CD可求出CD、BC、AB的长,根据,可证明△AED∽△FAD,根据相似三角形的性质可求出AF的长,即可求出BF的长.【题目详解】连接,延长BA,CD交于点,∵,∴四点共圆,∴,∵,∴,∴△AED∽△BCD,∴,∴,∴AD==,∵∴是等腰直角三角形,∵BC=2CD,∴∴CD=DG,∵,∴是等腰直角三角形,∴,∴,∵,,∴△AED∽△FAD,∴,∴∴.【题目点拨】本题考查圆周角定理、勾股定理及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.三、解答题(共66分)19、(1)甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【解题分析】分析:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方.根据题意,得解之,得答:甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)设乙队平均每天的施工土方量至少要比原来提高z万立方.根据题意,得40(0.38+z)+110(0.38+z+0.42≥120,解之,得z≥0.112,答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.点睛:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.20、(2)m="2,A(-2,0);"(2)①,②点E′的坐标是(2,2),③点E′的坐标是(,2).【分析】试题分析:(2)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2当n=2时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′="BE"=2.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(2)由题意可知4m=4,m=2.∴二次函数的解析式为.∴点A的坐标为(-2,0).(2)①∵点E(0,2),由题意可知,.解得.∴AA′=.②如图,连接EE′.由题设知AA′=n(0<n<2),则A′O=2-n.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2–n)2+42=n2-4n+3.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n.又BE=OB-OE=2.∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,∴A′B2+BE′2=2n2-4n+29=2(n–2)2+4.当n=2时,A′B2+BE′2可以取得最小值,此时点E′的坐标是(2,2).③如图,过点A作AB′⊥x轴,并使AB′=BE=2.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴,∴AA′=∴EE′=AA′=,∴点E′的坐标是(,2).考点:2.二次函数综合题;2.平移.【题目详解】21、A地到C地之间高铁线路的长为592km.【分析】过点B作BD⊥AC于点D,利用锐角三角函数的定义求出AD及CD的长,进而可得出结论.【题目详解】过点B作BD⊥AC于点D,∵B地位于A地北偏东67°方向,距离A地520km,∴∠ABD=67°,∴AD=AB•sin67°=520×0.92=478.4km,BD=AB•cos67°=520×0.38=197.6km.∵C地位于B地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=197.6×≈113.9km,∴AC=AD+CD=478.4+113.9≈592(km).答:A地到C地之间高铁线路的长为592km.【题目点拨】考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.22、(1)0.3,45;(2)108°;(3).【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【题目详解】(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)秒;(2)秒;(3)能,秒或5秒【分析】(1)分别用x表示出线段BP和CQ的长,根据其相等求得x的值即可;(2)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(3)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ对应成比例以及AP和BC对应成比例两种情况来求x的值.【题目详解】(1)依题意可得:BP=20-4x,CQ=3x当BP=CQ时,20-4x=3x∴(秒)答:当秒时,BP=CQ(2)AP=4x,AB=20,AQ=30-3x,AC=30所以当时,有即:解得:x=(秒)答:当x=秒时,;(3)能.①当△APQ∽△CQB时,有即:解得:x=(秒)②当△APQ∽△CBQ时,有即:解得:x=5(秒)或x=-10(秒)(舍去)答:当x=秒或x=5秒时,△APQ与△CQB相似.【题目点拨】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比是解题的关键.24、(1)①;②或;(2).【分析】(1)①已知AB=2,根据勾股定理,结合两点之间的距离公式,即可得到答案;②根据题意,作出“限距点”的轨迹,结合图形,即可得到答案;(2)结合(1)的轨迹,作出图像,可分为两种情况进行分析,分别求出两个临界点,即可求出t的取值范围.【题目详解】(1)①根据题意,如图:∵点,∴AB=2,∵点C为(0,2),点O(0,0)在AB上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论