版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市2024届数学九年级第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列命题中,正确的个数是()①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.A.2个 B.3个 C.4个 D.5个2.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.3.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A. B. C. D.4.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是()A.115° B.105° C.100° D.95°5.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.136.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A. B. C. D.7.如图,在Rt△ABC中,CD是斜边AB上的中线,若CD=5,AC=6,则tanB的值是()A. B. C. D.8.如图,已知为的直径,点,在上,若,则()A. B. C. D.9.若关于的一元二次方程的一个根是,则的值是()A.1 B.0 C.-1 D.210.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定二、填空题(每小题3分,共24分)11.计算:cos45°=________________12.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为,则这个正方形的边长为_____________13.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.14.已知,且,则的值为__________.15.小球在如图6所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是____.
16.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.17.将二次函数y=x2﹣6x+8化成y=a(x+m)2+k的形式是_____.18.在平面坐标系中,第1个正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作第2个正方形,延长交轴于点;作第3个正方形,…按这样的规律进行下去,第5个正方形的边长为__________.三、解答题(共66分)19.(10分)已知三个顶点的坐标分别.(1)画出;(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△;(3)写出点A的对应点的坐标:___.20.(6分)已知二次函数y=x2+2mx+(m2﹣1)(m是常数).(1)若它的图象与x轴交于两点A,B,求线段AB的长;(2)若它的图象的顶点在直线y=x+3上,求m的值.21.(6分)已知关于x的一元二次方程.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为,,且,求m的值.22.(8分)计算:=_________。23.(8分)已知,如图,是直角三角形斜边上的中线,交的延长线于点.求证:;若,垂足为点,且,求的值.24.(8分)计算题:|﹣3|+tan30°﹣﹣(2017﹣π)0+()-1.25.(10分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.26.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研其性质——运用函数解决问题”的学习过程.如图,在平面直角坐标系中己经绘制了一条直线.另一函数与的函数关系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直线的解析式;(2)请根据列表中的数据,绘制出函数的近似图像;(3)请根据所学知识并结合上述信息拟合出函数的解折式,并求出与的交点坐标.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据弦、等圆、弧的相关概念直接进行排除选项.【题目详解】①直径是弦,弦是不一定是直径,故错误;②弦是圆上两点之间的线段,故错误;③半圆是弧,但弧不一定是半圆,故正确;④直径相等的两个圆是等圆,故正确;⑤等于半径两倍的弦是直径,故错误;所以正确的个数为2个;故选A.【题目点拨】本题主要考查圆的相关概念,正确理解圆的相关概念是解题的关键.2、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【题目详解】平移后的抛物线为故答案为A.【题目点拨】此题主要考查抛物线平移的性质,熟练掌握,即可解题.3、B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【题目详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为=,故选:B.【题目点拨】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.4、B【分析】根据圆内接四边形的对角互补得到∠BAD+∠BCD=180°,而∠BCD与∠DEC为邻补角,得到∠DCE=∠BAD=105°.【题目详解】解:∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,而∠BCD+∠DCE=180°,∴∠DCE=∠BAD,而∠BAD=105°,∴∠DCE=105°.故选B.5、B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】解:分两种情况:当腰为4时,4+4<9,不能构成三角形;当腰为9时,4+9>9,所以能构成三角形,周长是:9+9+4=1.故选B.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.6、D【解题分析】试题分析:A、由一次函数y=kx+k的图象可得:k>0,此时二次函数y=kx2﹣kx的图象应该开口向上,错误;B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误;C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误;D、正确.故选D.考点:1、二次函数的图象;2、一次函数的图象7、C【解题分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC的长度,然后根据锐角的正切等于对边比邻边解答.【题目详解】∵CD是斜边AB上的中线,CD=5,
∴AB=2CD=10,
根据勾股定理,BC=tanB=.
故选C.【题目点拨】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.8、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【题目详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【题目点拨】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.9、B【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m的一元一次方程,然后解一元一次方程即可.【题目详解】把x=1代入x2-x+m=1得1-1+m=1,解得m=1.故选B.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.10、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.【题目详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴点P到矩形的两条对角线AC和BD的距离之和是1.故选B.【题目点拨】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】将cos45°=代入进行计算即可.【题目详解】解:cos45°=故答案为:1.【题目点拨】此题考查的是特殊角的锐角三角函数值,掌握cos45°=是解决此题的关键.12、【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【题目详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE绕点A旋转60°至△AGF,∴,∴△AEF和△ABG为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC,∴GC=,∵∠GBM=90°-∠ABG=30°,∴在Rt△BGM中,GM=m,BM=,Rt△GMC中,勾股可得,即:,解得:,∴边长为.故答案为:.【题目点拨】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC是解决此题的关键.13、1.【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【题目详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr,解得:r=1.故答案为1.【题目点拨】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.14、1【解题分析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.15、【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【题目详解】由图可知,共有5块瓷砖,白色的有3块,所以它停在白色地砖上的概率=.考点:概率.16、k>2【解题分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【题目详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【题目点拨】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.17、y=(x﹣3)2﹣1【分析】直接利用配方法将原式变形进而得出答案.【题目详解】y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1.故答案为:y=(x﹣3)2﹣1.【题目点拨】本题考查了二次函数的三种形式,正确配方是解答本题的关键.18、【分析】先求出第一个正方形ABCD的边长,再利用△OAD∽△BA1A求出第一个正方形的边长,再求第三个正方形边长,得出规律可求出第5个正方形的边长.【题目详解】∵点的坐标为,点的坐标为∴OA=3,OD=4,∴∵∠DAB=90°∴∠DAO+∠BAA1=90°,又∵∠DAO+∠ODA=90°,∴∠ODA=∠BAA1∴△OAD∽△BA1A∴即∴∴同理可求得得出规律,第n个正方形的边长为∴第5个正方形的边长为.【题目点拨】本题考查正方形的性质,相似三角形的判定和性质,勾股定理的运用,此题的关键是根据计算的结果得出规律.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)(−3,1)【分析】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,在改变的过程中保持形状不变(大小可变)即可得出答案.(3)利用(2)中图象,直接得出答案.【题目详解】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形。所画图形如下所示:它的三个对应顶点的坐标分别是:(−3,1)、(3,3)、(1,−1).(3)利用(2)中图象,直接得出答案.故答案为:(−3,1)【题目点拨】此题考查坐标与图形性质,位似变换,解题关键在于掌握作图法则.20、AB=2;(2)m=1.【分析】(1)令y=0求得抛物线与x轴的交点,从而求得两交点之间的距离即可;(2)用含m的式子表示出顶点坐标,然后代入一次函数的解析式即可求得m的值.【题目详解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函数y=x2+2mx+(m2﹣1),∴顶点坐标为(﹣2m,),即:(﹣2m,﹣1),∵图象的顶点在直线y=x+3上,∴﹣×(﹣2m)+3=﹣1,解得:m=1.【题目点拨】本题考查了解二次函数的问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.21、(1)证明见解析(1)1或1【解题分析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.试题解析:(1)证明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵,方程的两实根为,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.22、4【解题分析】根据二次根式除法法则计算即可求解.【题目详解】解:原式===4.故答案为:4.【题目点拨】本题考查二次根式的除法运算,注意二次根式的运算结果要化为最简二次根式.在二次根式的混合运算中,解题关键是能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径.23、(1)证明见解析;(2)9.【分析】(1)首先根据直角三角形斜边中线的性质,得出,进而得出,然后由垂直的性质得出,最后由,即可得出;(2)首先由相似三角形的性质得出,然后由得出,进而即可得出的值.【题目详解】是直角三角形斜边上的中线.,而又由(1)知即..【题目点拨】此题主要考查直角三角形斜边中线性质以及相似三角形的判定与性质,熟练掌握,即可解题.24、4
【分析】根据零指数幂、绝对值、负整数指数幂及三角函数值解答即可.【题目详解】解:原式=3+﹣2﹣1+3=4【题目点拨】本题考查了零指数幂、绝对值、负整数指数幂及三角函数值,熟练掌握运算法则是解本题的关键.25、(1)详见解析;(2).【分析】(1)方法1、先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题组成员培训
- 专科护士培训收获
- 3.1 水循环(分层练习)高一地理同步高效课堂(人教版2019必修第一册)
- T-YNZYC 0083-2023 绿色药材 云黄连种苗生产技术规程
- T-YNAEPI 0001-2024 有机固废低温绝氧碳化处理工程技术规范
- 期中模拟试卷(1-4单元)(试题)2024-2025学年六年级上册数学人教版
- 穿越刺绣的时尚语言-抽纱刺绣与现代时装设计探索
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)9.2 任务1 安装VPN服务器
- 幼儿教育绘本分享-幼儿教育专家
- 山东省滕州市2024-2025学年上学期中练习九年级英语试题(无答案)
- 统编版一年级语文下册 口语交际 听故事讲故事 小猫种鱼 一等奖创新教学设计
- 各式停水通知范文6篇
- 山西陆合集团恒泰南庄煤业有限公司矿山矿产资源开发、地质环境保护与土地复垦方案
- 2022-2023学年陕西省西安市普通高校对口单招计算机基础自考真题(含答案)
- 留置针埋置方法(宠物临床基础治疗技术)
- 酒店账单-水单-住宿
- 2023年山东春季高考数学试题word版(含答案解析)
- 我的连衣裙【经典绘本】
- 国有资产管理监督概述
- 猴的介绍(终稿)
- 中国石油化工集团公司职工违纪违规行为处分规定
评论
0/150
提交评论