版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省四平市第二十一中学校高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A.5、10、15、20、25、30 B.3、13、23、33、43、53C.1、2、3、4、5、6 D.2、4、8、16、32、48参考答案:B【考点】系统抽样方法.【分析】将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,系统抽样又称等距抽样,这时间隔一般为总体的个数除以样本容量,若不能整除时,要先去掉几个个体.【解答】解:从60枚某型导弹中随机抽取6枚,采用系统抽样间隔应为=10,只有B答案中导弹的编号间隔为10,故选B2.下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2 D.a3>b3参考答案:A【考点】充要条件.【分析】利用不等式的性质得到a>b+1?a>b;反之,通过举反例判断出a>b推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1?a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.3.下面几种推理过程是演绎推理的是
(
)A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人;B.由三角形的性质,推测空间四面体的性质;C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;D.在数列中,,由此归纳出的通项公式.参考答案:C略4.在△ABC中,角均为锐角,且则△ABC的形状是
(
)A
直角三角形
B
锐角三角形
C
钝角三角形
D
等腰三角形
参考答案:C5.在一个棱长为3cm的正方体的表面涂上颜色,将其适当分割成棱长为1cm的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A. B. C. D.参考答案:C【考点】等可能事件的概率.【分析】由题意知本题是一个等可能事件的概率,试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据等可能事件的概率得到结果.【解答】解:在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个.由题意知本题是一个等可能事件的概率,试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为=.故选C.13.与不等式同解的不等式是
A.
B.
C.
D.参考答案:B略7.直线(cos)x+(sin)y+2=0的倾斜角为(
)A.
B.
C.
D.参考答案:B8.已知x,y均为正实数,,那么xy的最大值是(
)A.1
B. C.
D.参考答案:A9.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是(
)A.8 B.6 C.4 D.2参考答案:B考点:抽样试题解析:被抽出的号码构成以8为公差的等差数列,即所以第1组中用抽签的方法确定的号码是6.故答案为:B10.用秦九韶算法计算多项式在时的值时,的值为(
)
A.-845
B.220
C.-57
D.34参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.由这六个数字组成_____个没有重复数字的六位奇数.参考答案:
解析:既不能排首位,也不能排在末尾,即有,其余的有,共有12.如果对定义在区间上的函数,对区间内任意两个不相等的实数,都有,则称函数为区间上的“函数”,给出下列函数及函数对应的区间:①;②;③;④,以上函数为区间上的“函数”的序号是
.(写出所有正确的序号)参考答案:①②13.已知命题p:?x∈R,x2+2ax+a≤0.若命题p是假命题,则实数a的取值范围是.参考答案:(0,1)【考点】命题的真假判断与应用.【分析】将?变为?,结论否定写出命题p的否定;利用p与¬p真假相反得到¬p为真命题;令判别式小于0求出a即可.【解答】解:命题p:?x∈R,x2+2ax+a≤0的否定为命题p:?x∈R,x2+2ax+a>0∵命题p为假命题∴命题¬p为真命题即x2+2ax+a>0恒成立∴△=4a2﹣4a<0解得0<a<1故答案为:(0,1)14.已知数列{an}满足条件a1=–2,an+1=2+,则a5=
.参考答案:15.的展开式中所有奇数项的二项式系数之和为,则求展开式中系数最大的项。参考答案:由已知得,而展开式中二项式系数最大项是略16.某工厂去年产值为a,计划在今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为________.参考答案:17.向量,,且,则_________.参考答案:分析】根据向量的坐标运算和向量的垂直关系,求得,进而得到的坐标,利用模的计算公式,即可求解.【详解】由向量,,且,即,解得,所以,所以.【点睛】本题主要考查了向量的垂直关系的应用,以及向量的坐标运算和向量的模的计算,着重考查了计算与求解能力,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)已知(2x-y+1)+(y-2)i=0,求实数x,y的值.参考答案:解析:∵(2x-y+1)+(y-2)i=0,∴解得所以实数x,y的值分别为,2.
略19.某厂要生产甲种产品45个,乙种产品55个,所用原料为A、B两种规格的金属板,其面积分别为2
和3
,用A种可同时造甲种产品3个和乙种产品5个,用B种可同时造甲、乙两种产品各6个。问A、B两种原料各取多少块可保证完成任务,且使总的用料(面积)最小?参考答案:解析:设A种原料为x个,B种原料为y个,由题意有:
目标函数为,由线性规划知:使目标函数最小的解为(5,5)20.(本小题满分12分)已知数列是一个等差数列,且,。(Ⅰ)求的通项;(Ⅱ)求前n项和的最大值及相应的n的值.参考答案:21.已知函数f(x)=ax﹣1﹣lnx(a∈R)(1)讨论函数f(x)的单调性;(2)若函数f(x)在x=1处取得极值,不等式f(x)≥bx﹣2对?x∈(0,+∞)恒成立,求实数b的取值范围;(3)当x>y>e﹣1时,证明不等式exln(1+y)>eyln(1+x)参考答案:【考点】6B:利用导数研究函数的单调性;6C:函数在某点取得极值的条件;6K:导数在最大值、最小值问题中的应用.【分析】(1)由f(x)=ax﹣1﹣lnx,求得f′(x)=.然后分a≤0与a>0两种情况讨论,从而得到f′(x)的符号,可得f(x)在其定义域(0,+∞)内的单调性,最后综合可得答案;(2)函数f(x)在x=1处取得极值,由(1)的讨论可得a=1.将不等式f(x)≥bx﹣2化简整理得到1+﹣≥b,再构造函数g(x)=1+﹣,利用导数研究g(x)的单调性,得到[g(x)]min=1﹣].由此即可得到实数b的取值范围;(3)设函数F(t)=,其中t>e﹣1.利用导数研究F(x)的单调性,得到得F(t)是(e﹣1,+∞)上的增函数.从而得到当x>y>e﹣1时,F(x)>F(y)即>,变形整理即可得到不等式exln(1+y)>eyln(1+x)成立.【解答】解:(1)∵f(x)=ax﹣1﹣lnx,∴f′(x)=a﹣=,当a≤0时,f'(x)≤0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)单调递减;当a>0时,f'(x)<0得0<x≤,f'(x)>0得x>,∴f(x)在(0,)上单调递减,在(,+∞)上单调递增,综上所述,当a≤0时函数f(x)在(0,+∞)上是减函数;当a>0时,f(x)在(0,)上是减函数,在(,+∞)上是增函数.(2)∵函数f(x)在x=1处取得极值,∴根据(1)的结论,可得a=1,∴f(x)≥bx﹣2,即x+1﹣lnx≥bx,两边都除以正数x,得1+﹣≥b,令g(x)=1+﹣,则g′(x)=﹣﹣=﹣(2﹣lnx),由g′(x)>0得,x>e2,∴g(x)在(0,e2)上递减,由g′(x)<0得,0<x<e2,∴g(x)在(e2,+∞)上递增,∴g(x)min=g(e2)=1﹣,可得b≤1﹣,实数b的取值范围为(﹣∞,1﹣].(3)令F(t)=,其中t>e﹣1可得F'(t)==再设G(t)=ln(1+t)﹣,可得G'(t)=+>0在(e﹣1,+∞)上恒成立∴G(t)是(e﹣1,+∞)上的增函数,可得G(t)>G(e﹣1)=lne﹣=1﹣>0因此,F'(t)=>0在(e﹣1,+∞)上恒成立,可得F(t)=是(e﹣1,+∞)上的增函数.∵x>y>e
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版新员工试岗期职业发展规划与实施合同3篇
- 应急预案与突发事件类型
- 电子行业产品维修培训总结
- 建筑与市政工程质量安全巡查的背景
- 托育防恐防暴安全教育
- 交通运输行业促销策略评估
- 二零二五版外贸实习实训基地建设合同3篇
- 二零二五年度环保设备委托托管合作协议3篇
- 《学校心理辅导》课件
- 二零二五年度居间服务合同范本6篇
- 新能源充电站运营手册
- 2024年兰州新区实正鑫热电有限公司招聘笔试冲刺题(带答案解析)
- 血透室护士长述职
- (正式版)JTT 1218.4-2024 城市轨道交通运营设备维修与更新技术规范 第4部分:轨道
- 2024年汉中市行政事业单位国有资产管理委员会办公室四级主任科员公务员招录1人《行政职业能力测验》模拟试卷(答案详解版)
- 客车交通安全培训课件
- 艺术培训校长述职报告
- ICU新进人员入科培训-ICU常规监护与治疗课件
- 选择性必修一 期末综合测试(二)(解析版)2021-2022学年人教版(2019)高二数学选修一
- 学校制度改进
- 各行业智能客服占比分析报告
评论
0/150
提交评论