2024届山东省张店区七校联考数学九年级第一学期期末达标测试试题含解析_第1页
2024届山东省张店区七校联考数学九年级第一学期期末达标测试试题含解析_第2页
2024届山东省张店区七校联考数学九年级第一学期期末达标测试试题含解析_第3页
2024届山东省张店区七校联考数学九年级第一学期期末达标测试试题含解析_第4页
2024届山东省张店区七校联考数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省张店区七校联考数学九年级第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图是二次函数的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是抛物线上两点,则y1<y2,其中正确的结论有()个A.1 B.2 C.3 D.42.若,则的值为()A.0 B.5 C.-5 D.-103.如果2是方程x2-3x+k=0的一个根,则常数k的值为()A.2 B.1 C.-1 D.-24.已知关于的方程有一个根是,则的值是()A.-1 B.0 C. D.15.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,9的中位数是6C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是106.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.87.点关于原点的对称点是A. B. C. D.8.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”9.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤11.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球,摸出白球的概率是()A. B. C. D.12.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形二、填空题(每题4分,共24分)13.已知关于x的方程x2+x+m=0的一个根是2,则m=_____,另一根为_____.14.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.15.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为__________米.16.已知三个边长分别为2,3,5的正方形如图排列,则图中阴影部分的面积为_____.17.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______;若将绕点顺时针旋转,则顶点所经过的路径长为__________.18.是方程的解,则的值__________.三、解答题(共78分)19.(8分)如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边AB、BC于点D、E,连结AE.(1)如果∠B=25°,求∠CAE的度数;(2)如果CE=2,,求的值.20.(8分)如图,在△ABC中,∠C=60°,AB=4.以AB为直径画⊙O,交边AC于点D.AD的长为,求证:BC是⊙O的切线.21.(8分)小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A、B、C三个班,他俩希望编班时分在不同班.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人不在同班的概率.22.(10分)如图,已知直线与轴、轴分别交于点与双曲线分别交于点,且点的坐标为.(1)分别求出直线、双曲线的函数表达式;(2)求出点的坐标;(3)利用函数图像直接写出:当在什么范围内取值时.23.(10分)已知y与x成反比例,则其函数图象与直线相交于一点A.(1)求反比例函数的表达式;(2)直接写出反比例函数图象与直线y=kx的另一个交点坐标;(3)写出反比例函数值不小于正比例函数值时的x的取值范围.24.(10分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F(I)如图①,连接AD,若,求∠B的大小;(Ⅱ)如图②,若点F为的中点,的半径为2,求AB的长.25.(12分)一艘运沙船装载着5000m3沙子,到达目的地后开始卸沙,设平均卸沙速度为v(单位:m3/小时),卸沙所需的时间为t(单位:小时).(1)求v关于t的函数表达式,并用列表描点法画出函数的图象;(2)若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围.26.如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.

参考答案一、选择题(每题4分,共48分)1、A【分析】①由抛物线的开口方向、对称轴即与y轴交点的位置,可得出a<0、b>0、c>0,进而即可得出abc<0,结论①错误;②由抛物线的对称轴为直线x=1,可得出2a+b=0,结论②正确;③由抛物线的对称性可得出当x=2时y>0,进而可得出4a+2b+c>0,结论③错误;④找出两点离对称轴的距离,比较后结合函数图象可得出y1=y2,结论④错误.综上即可得出结论.【题目详解】解:①∵抛物线开口向下,对称轴为直线x=1,与y轴交于正半轴,

∴a<0,=1,c>0,∴b=-2a>0,∴abc<0,结论①错误;②抛物线对称轴为直线x=1,

∴=1,∴b=-2a,∴2a+b=0,结论②正确;③∵抛物线的对称轴为直线x=1,与x轴的一个交点坐标是(-1,0),∴另一个交点坐标是(3,0),∴当x=2时,y>0,∴4a+2b+c>0,结论③错误;④=,,∵抛物线的对称轴为直线x=1,抛物线开口向下,∴y1=y2,结论④错误;综上所述:正确的结论有②,1个,故选择:A.【题目点拨】本题考查了二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,观察函数图象,逐一分析四条结论的正误是解题的关键.2、C【分析】将转换成的形式,再代入求解即可.【题目详解】将代入原式中原式故答案为:C.【题目点拨】本题考查了代数式的运算问题,掌握代入法是解题的关键.3、A【分析】把x=1代入已知方程列出关于k的新方程,通过解方程来求k的值.【题目详解】解:∵1是一元二次方程x1-3x+k=0的一个根,

∴11-3×1+k=0,

解得,k=1.

故选:A.【题目点拨】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.4、A【分析】把b代入方程得到关于a,b的式子进行求解即可;【题目详解】把b代入中,得到,∵,∴两边同时除以b可得,∴.故答案选A.【题目点拨】本题主要考查了一元二次方程的解,准确利用等式的性质是解题的关键.5、B【解题分析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.6、B【分析】设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【题目详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【题目点拨】本题主要考查了用评率估计概率.7、C【解题分析】解:点P(4,﹣3)关于原点的对称点是(﹣4,3).故选C.【题目点拨】本题考查关于原点对称的点的坐标,两个点关于原点对称时,两个点的横、纵坐标符号相反,即P(x,y)关于原点O的对称点是P′(﹣x,﹣y).8、D【分析】根据概率公式逐一判断即可.【题目详解】A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.【题目点拨】此题考查的是概率问题,掌握根据概率公式分析概率的大小是解决此题的关键.9、D【分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【解题分析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.11、A【分析】根据概率公式计算即可.【题目详解】∵盒子内装有红球1个、绿球1个、白球2个共4个球,∴出一个球,摸出白球的概率是,故选:A.【题目点拨】此题考查概率的公式,熟记概率的计算方法是解题的关键.12、C【解题分析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.二、填空题(每题4分,共24分)13、;.【解题分析】先把x=2代入方程,易求k,再把所求k的值代入方程,可得,再利用根与系数的关系,可求出方程的另一个解:解:把x=2代入方程,得.再把代入方程,得.设次方程的另一个根是a,则2a=-6,解得a=-3.考点:1.一元二次方程的解;2.根与系数的关系.14、60°【解题分析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.15、【解题分析】设圆心为O,半径长为r米,根据垂径定理可得AD=BD=6,则OD=(r-4),然后利用勾股定理在Rt△AOD中求解即可.【题目详解】解:设圆心为O,半径长为r米,可知AD=BD=6米,OD=(r-4)米在Rt△AOD中,根据勾股定理得:,解得r=6.5米,即半径长为6.5米.故答案为6.5【题目点拨】本题考查了垂径定理的应用,要熟练掌握勾股定理的性质,能够运用到实际生活当中.16、.【解题分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【题目详解】解:如图,对角线所分得的三个三角形相似,根据相似的性质可知,解得,即阴影梯形的上底就是().再根据相似的性质可知,解得:,所以梯形的下底就是,所以阴影梯形的面积是.故答案为:.【题目点拨】本题考查的是相似三角形的性质,相似三角形的对应边成比例.17、3.5;【分析】(1)利用△ABC所在的正方形的面积减去四周三个直角三角形的面积,列式计算即可得解;(2)根据勾股定理列式求出AC,然后利用弧长公式列式计算即可得解.【题目详解】(1)△ABC的面积=3×3−×2×3−×1×3−×1×2,=9−3−1.5-1=3.5;(2)由勾股定理得,AC=,所以,点A所经过的路径长为故答案为:3.5;.【题目点拨】本题考查了利用旋转的性质,弧长的计算,熟练掌握网格结构,求出AC的长是解题的关键.18、【分析】先根据是方程的解求出的值,再进行计算即可得到答案.【题目详解】解:∵是方程的解,∴,∴,∴,∴,故答案为:.【题目点拨】本题主要考查了一元二次方程的解,解题时,逆用一元二次方程的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.三、解答题(共78分)19、(1)∠CAE=40°;(2)【分析】(1)由题意DE垂直平分AB,∠EAB=∠B,从而求出∠CAE的度数;(2)根据题干可知利用余弦以及勾股定理求出的值.【题目详解】解:(1)∵DE垂直平分AB,∴EA=EB,∴∠EAB=∠B=22°.∴∠CAE=40°.(2)∵∠C=90°,∴.∵CE=2,∴AE=1.∴AC=.∵EA=EB=1,∴BC=2.∴,∴.【题目点拨】本题主要应用三角函数定义来解直角三角形,关键要运用锐角三角函数的概念及比正弦和余弦的基本关系进行解题.20、证明见解析.【分析】连接OD,根据弧长公式求出AOD的度数,再证明AB⊥BC即可;【题目详解】证明:如图,连接,是直径且

.

设,的长为,

解得.

在☉O中,..

,,即又为直径,是☉O的切线.【题目点拨】本题考查切线的判定,圆周角定理以及等腰三角形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、(1)9种结果,见解析;(2)P=【分析】(1)小明有3种分班情况,小林有3种分班情况,共有9种结果;(2)根据(1)即可列式求出两人不在同班的概率.【题目详解】(1)树状图如下:所有可能的结果共有9种.(2)两人不在同班的有6种,∴P(两人不在同班)==.【题目点拨】此题考查求事件的概率,熟记概率的公式,正确代入求值即可.22、(1),;(2)D;(3).【分析】(1)把代入得到的值,把代入双曲线得到的值;(2)把一次函数和反比例函数的解析式联立方程,解方程即可求得;(3)直线图象在双曲线上方的部分时的值,即为时的取值范围.【题目详解】解:(1)把点代入,得:,直线的解析式;把点代入,得:,双曲线的解析式;(2)解得,,点的坐标为;(3),的坐标为,观察图形可知:当时,的取值范围为:.【题目点拨】本题考查了反比例函数与一次函数图象的交点问题:把两函数的解析式联立起来组成方程组,解方程组即可得到它们的交点坐标.也考查了数形结合的思想,利用数形结合解决取值范围的问题,是非常有效的方法.23、(1)y=;见详解;(2)另一个交点的坐标是;见详解;(1)0<x≤1或x≤-1.【分析】(1)根据题意可直接求出反比例函数表达式;(2)由(1)及一次函数表达式联立方程组求解即可;(1)根据反比例函数与一次函数的不等关系可直接求得.【题目详解】解:(1)设反比例函数表达式为,由题意得:把A代入得k=1,反比例函数的表达式为:y=;(2)由(1)得:把A代入,得k=1,,,解得,另一个交点的坐标是;(1)因为反比例函数值不小于正比例函数值,所以0<x≤1或x≤-1.【题目点拨】本题主要考查反比例函数与一次函数的综合,关键是根据题意得到两个函数表达式.24、(1)∠B=40°;(2)AB=6.【分析】(1)连接OD,由在△ABC中,∠C=90°,BC是切线,易得AC∥OD

,即可求得∠CAD=∠ADO

,继而求得答案;

(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD

,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.【题目详解】解:(1)如解图①,连接OD,∵BC切⊙O于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【题目点拨】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.25、(1)v=,见解析;(2)200≤v≤1【分析】(1)直接利用反比例函数解析式求法得出答案;(2)直接利用(1)中所求解析式得出v的取值范围.【题目详解】(1)由题意可得:v=,列表得:v…1011625…t…246…描点、连线,如图所示:;(2)当t=20时,v==1,当t=25时,v==200,故卸沙的速度范围是:200≤v≤1.【题目点拨】本题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.26、(1)①;②1.5;(2)①5;②、,、5.【解题分析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论