版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南通市北城中学数学九年级第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是().A. B. C. D.2.口袋中有2个红球和1个黑球,每次摸到后放回,两次都摸到红球的概率为()A. B. C. D.3.已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(
)A.
B.
C.
D.4.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④5.已知2是关于x的方程的一个根,则这个方程的另一个根是()A.3 B.-3 C.-5 D.66.已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a,b的大小关系为()A.a>b B.a<bC.a=b D.不能确定7.二次函数y=x2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是()A.y=+3 B.y=+3C.y=﹣3 D.y=﹣38.圆心角为140°的扇形的半径为3cm,则这个扇形的面积是()cm1.A.π B.3π C.9π D.6π9.如图,圆锥的底面半径OB=6cm,高OC=8cm,则这个圆锥的侧面积是()A.30 B.30π C.60π D.48π10.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变11.如图,△ABC中,点D是AB的中点,点E是AC边上的动点,若△ADE与△ABC相似,则下列结论一定成立的是()A.E为AC的中点 B.DE是中位线或AD·AC=AE·ABC.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°12.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.; B.; C.; D.;二、填空题(每题4分,共24分)13.如图,已知等边的边长为,顶点在轴正半轴上,将折叠,使点落在轴上的点处,折痕为.当是直角三角形时,点的坐标为__________.14.是方程的解,则的值__________.15.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)16.如图,已知点P是△ABC的重心,过P作AB的平行线DE,分别交AC于点D,交BC于点E,作DF//BC,交AB于点F,若四边形BEDF的面积为4,则△ABC的面积为__________17.已知是一元二次方程的一个根,则的值是______.18.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.三、解答题(共78分)19.(8分)小明想要测量一棵树DE的高度,他在A处测得树顶端E的仰角为30°,他走下台阶到达C处,测得树的顶端E的仰角是60°.已知A点离地面的高度AB=2米,∠BCA=30°,且B,C,D三点在同一直线上.求树DE的高度;20.(8分)如图,AB为⊙O的直径,弦AC的长为8cm.(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧于点E;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出关于原点对称的;(2)在轴上求作一点,使的周长最小,请画出,并直接写出的坐标.22.(10分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.(1)求的度数;(2)求证:23.(10分)已知关于x的一元二次方程x2+2x+2k-5=0有两个实数根.(1)求实数k的取值范围.(2)若方程的一个实数根为4,求k的值和另一个实数根.(3)若k为正整数,且该方程的根都是整数,求k的值.24.(10分)已知关于x的一元二次方程有两个实数根x1,x1.(1)求实数k的取值范围;(1)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.25.(12分)如图,在宽为40m,长为64m的矩形地面上,修筑三条同样宽的道路,每条道路均与矩形地面的一条边平行,余下的部分作为耕地,要使得耕地的面积为2418m2,则道路的宽应为多少?26.如图,在正方形中,点在边上,过点作于,且.(1)若,求正方形的周长;(2)若,求正方形的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【题目详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【题目点拨】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.2、D【分析】根据题意画出树形图即可求出两次都摸到红球的概率,进而得出选项.【题目详解】解:设红球为1,黑球为2,画树形图得:由树形图可知:两次都摸到红球的概率为.故选:D.【题目点拨】本题考查用列表法与树状图法求随机事件的概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.3、B【解题分析】分析:根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛:考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.4、D【解题分析】试题解析:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.5、A【解题分析】由根与系数的关系,即2加另一个根等于5,计算即可求解.【题目详解】由根与系数的关系,设另一个根为x,则2+x=5,即x=1.故选:A.【题目点拨】本题考查了根与系数的关系,用到的知识点:如果x1,x2是方程x2+px+q=0的两根,那么x1+x2=-p.6、D【解题分析】∵二次函数y=a(x+1)2-b(a≠0)有最小值,∴a>0,∵无论b为何值,此函数均有最小值,∴a、b大小无法确定.7、D【分析】先求出原抛物线的顶点坐标,再根据平移,得到新抛物线的顶点坐标,即可得到答案.【题目详解】∵原抛物线的顶点为(0,0),∴向左平移1个单位,再向下平移1个单位后,新抛物线的顶点为(﹣1,﹣1).∴新抛物线的解析式为:y=﹣1.故选:D.【题目点拨】本题主要考查二次函数图象的平移规律,通过平移得到新抛物线的顶点坐标,是解题的关键.8、D【解题分析】试题分析:扇形面积的计算公式为:,故选择D.9、C【解题分析】试题分析:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴这个圆锥漏斗的侧面积是:πrl=π×6×10=60π(cm2).故选C.考点:圆锥的计算.10、D【解题分析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.11、D【分析】如图,分两种情况分析:由△ADE与△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.【题目详解】因为,△ADE与△ABC相似,所以,∠ADE=∠B或∠ADE=∠C所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°故选D【题目点拨】本题考核知识点:相似性质.解题关键点:理解相似三角形性质.12、A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【题目详解】由∠ACB=90°,CD⊥AB于D,得
∠BCD=∠A
tan∠BCD=tan∠A=,
故选A.【题目点拨】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.二、填空题(每题4分,共24分)13、,【解题分析】当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=,由此可求出OA′的长,也就能求出A′E的长,据此可求出A′的坐标;当∠A’EO=90°时,△A′EO是直角三角形,设OE=x,则AE=A’E=-x,根据三角函数的关系列出方程即可求解x,从而求出A’的坐标.【题目详解】当A′E∥x轴时,△OA′E是直角三角形,故∠A′OE=60°,A′E=AE,设A′的坐标为(0,b),∴AE=A′E=A’Otan60°=b,OE=2b,b+2b=2+,∴b=1,A′的坐标是(0,1);当∠A’EO=90°时,△A′EO是直角三角形,设OE=x,则AE=A’E=-x,∵∠AOB=60°,∴A’E=OEtan60°=x=-x解得x=∴A’O=2OE=∴A’(0,)综上,A’的坐标为,.【题目点拨】此题主要考查图形与坐标,解题的关键是熟知等边三角形的性质、三角函数的应用.14、【分析】先根据是方程的解求出的值,再进行计算即可得到答案.【题目详解】解:∵是方程的解,∴,∴,∴,∴,故答案为:.【题目点拨】本题主要考查了一元二次方程的解,解题时,逆用一元二次方程的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.15、有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【题目详解】解:(x+1)(x-3)=2x-5整理得:,即,配方得:,解得:,,∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【题目点拨】此题考查解一元二次方程,或者求判别式与根的个数的关系.16、9【分析】连接CP交AB于点H,利用点P是重心得到=,得出S△DEC=4S△AFD,再由DE//BF证出,由此得到S△DEC=S△ABC,继而得出S四边形BEDF=S△ABC,从而求出△ABC的面积.【题目详解】如图,连接CP交AB于点H,∵点P是△ABC的重心,∴,∴,∵DF//BE,∴△AFD∽△DEC,∴S△DEC=4S△AFD,∵DE//BF,∴,△DEC∽△ABC,∴S△ABC=S△DEC,∴S四边形BEDF=S△ABC,∵四边形BEDF的面积为4,∴S△ABC=9故答案为:9.【题目点拨】此题考察相似三角形的判定及性质,做题中首先明确重心的意义,连接CP交AB于点H是解题的关键,由此得到边的比例关系,再利用相似三角形的性质:面积的比等于相似比的平方推导出几部分图形的面积之间的关系,得到三角形ABC的面积.17、0【分析】将代入方程中,可求出m的两个解,然后根据一元二次方程的定义即可判断m可取的值.【题目详解】解:将代入一元二次方程中,得解得:∵是一元二次方程∴解得故m=0故答案为:0.【题目点拨】此题考查的是一元二次方程的定义和解,掌握一元二次方程的二次项系数不为0和解的定义是解决此题的关键.18、【分析】方程有两个不相等的实数根,则>2,由此建立关于k的不等式,然后可以求出k的取值范围.【题目详解】解:由题意知,=36-36k>2,
解得k<1.
故答案为:k<1.【题目点拨】本题考查了一元二次方程根的情况与判别式的关系:(1)>2⇔方程有两个不相等的实数根;(2)=2⇔方程有两个相等的实数根;(3)<2⇔方程没有实数根.同时注意一元二次方程的二次项系数不为2.三、解答题(共78分)19、树DE的高度为6米.【分析】先根据∠ACB=30°求出AC=1米,再求出∠EAC=60°,解Rt△ACE得EC的长,依据∠DCE=60°,解Rt△CDE得的长.【题目详解】∵∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=1.又∵∠DCE=60°,∴∠ACE=90°.∵AF∥BD,∴∠CAF=∠ACB=30°,∴∠EAC=60°.在Rt△ACE中,∵,∴,在Rt△DCE中∵∠DCE=60°,,∴.答:树DE的高度为6米.【题目点拨】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.20、(1)见解析;(2)10cm.【分析】(1)以点A,点C为圆心,大于AC为半径画弧,两弧的交点和点O的连线交弦AC于点D,交优弧于点E;(2)由垂径定理可得AD=CD=4cm,由勾股定理可求OA的长,即可求解.【题目详解】(1)如图所示:(2)∵DE⊥AC,∴AD=CD=4cm,∵AO2=DO2+AD2,∴AO2=(DE﹣AO)2+16,∴AO=5,∴AB=2AO=10cm.【题目点拨】本题考查了圆的有关知识,勾股定理,灵活运用勾股定理求AO的长是本题的关键.21、(1)答案见解析;(2)作图见解析,P坐标为(2,0)【分析】(1)根据网格结构找出点、、关于原点的对称点、、的位置,然后顺次连接即可;(2)找出点关于轴的对称点,连接与轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点的位置,然后连接、并根据图象写出点的坐标即可.【题目详解】解:(1)△如图所示;(2)作点A(1,1)关于x轴的对应点,连接交x轴于点P,则点P为所求的点,连接△APB,则△APB为所求的三角形.此时点P坐标为(2,0)【题目点拨】本题考查了利用旋转变换作图,利用平移变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.22、(1)30°(2)证明见解析【分析】(1)通过平行四边形的性质、中点的性质、平行线的性质去证明,可得,再根据求解即可;(2)延长FE至点N,使,连接AN,通过证明,可得,再根据特殊角的锐角三角函数值,即可得证.【题目详解】(1)∵四边形ABCD为平行四边形∵M为AD的中点即即;(2)延长FE至点N,使,连接AN,由(1)知,.【题目点拨】本题考查了平行四边形的综合问题,掌握平行四边形的性质、平行线的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.23、(1)k≤1;(2)k的值为-,另一个根为-2;(1)k的值为1或1.【分析】(1)根据一元二次方程根的判别式列不等式即可得答案;(2)根据一元二次方程根与系数的关系即可得答案;(1)由(1)可得k≤1,根据k为正整数可得k=1,k=2或k=1,分别代入方程,求出方程的根,根据该方程的根都是整数即可得答案.【题目详解】(1)∵关于x的一元二次方程x2+2x+2k﹣5=0有两个实数根,∴△=22﹣4×1×(2k﹣5)=﹣8k+24≥0,解得:k≤1,∴k的取值范围是k≤1.(2)设方程的另一个根为m,∴4+m=-2,解得:m=-2,∴2k﹣5=4×(-2)∴k=-,∴k的值为-,另一个根为-2.(1)∵k为正整数,且k≤1,∴k=1或k=2或k=1,当k=1时,原方程为x2+2x﹣1=0,解得x1=﹣1,x2=1,当k=2时,原方程为x2+2x-1=0,解得x1=-1+,x2=-1-,(舍去)当k=1时,原方程为x2+2x+1=0,解得x1=x2=-1,∴k的值为1或1.【题目点拨】本题考查一元二次方程根的判别式及根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若方程的两个实数根为x1、x2,那么,x1+x2=,x1·x2=;正确运用一元二次方程的根的判别式并熟练掌握韦达定理是解题关键.24、(1)(1)不存在【分析】(1)由题意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通过解该不等式即可求得k的取值范围;(1)假设存在实数k使得x1·x1-x11-x11≥0成立.由根与系数的关系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0转化为3x1·x1-(x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧交通管理平台建设合同
- 数码产品维修服务合同
- 人工智能在医疗器械研发中的应用前景考核试卷
- 2024施工现场安全规则确认协议
- 《完善水资源税制度的探讨》
- 《生态翻译学视角下《北上天堂》的翻译实践报告》
- 制度与流程建设与优化方法考核试卷
- 《老年慢性病患者长期照护需求的调查》
- 生物质燃气的燃烧效率与治理措施考核试卷
- 六年级数学下册 综合模拟试卷一(教师版)(北师大)
- 乳腺结节课件
- 班前安全技术交底记录表
- 2023年大学生《思想道德与法治》考试题库附答案(712题)
- 国家开放大学《监督学》形考任务1-4参考答案
- 霍兰德人格六角形模型(共享内容)
- 宝钢中央研究院创新战略与运行机制研究
- 建筑CAD测试多选题
- 支座铸造工艺设计
- 2022年学校禁毒工作计划
- GB-T-30512-2014-汽车禁用物质要求
- 生物相容性试验检测报告
评论
0/150
提交评论