吉林省长春市朝阳区2024届数学九上期末达标检测试题含解析_第1页
吉林省长春市朝阳区2024届数学九上期末达标检测试题含解析_第2页
吉林省长春市朝阳区2024届数学九上期末达标检测试题含解析_第3页
吉林省长春市朝阳区2024届数学九上期末达标检测试题含解析_第4页
吉林省长春市朝阳区2024届数学九上期末达标检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市朝阳区2024届数学九上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列方程中,是一元二次方程的是()A. B. C. D.2.已知反比例函数,下列各点在此函数图象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)3.边长等于6的正六边形的半径等于()A.6 B. C.3 D.4.如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的表达式是()A. B. C. D.5.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是()A. B. C. D.6.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A.8 B. C.4 D.7.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC的度数为()A.60° B.45° C.75° D.90°8.已知三地顺次在同-直线上,甲、乙两人均骑车从地出发,向地匀速行驶.甲比乙早出发分钟;甲到达地并休息了分钟后,乙追上了甲.甲、乙同时从地以各自原速继续向地行驶.当乙到达地后,乙立即掉头并提速为原速的倍按原路返回地,而甲也立即提速为原速的二倍继续向地行驶,到达地就停止.若甲、乙间的距离(米)与甲出发的时间(分)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙提速前的速度分别为米/分、米/分.B.两地相距米C.甲从地到地共用时分钟D.当甲到达地时,乙距地米9.将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A. B. C. D.10.如图,在中,是边上的点,以为圆心,为半径的与相切于点,平分,,,的长是()A. B.2 C. D.11.如图,在一张矩形纸片中,对角线,点分别是和的中点,现将这张纸片折叠,使点落在上的点处,折痕为,若的延长线恰好经过点,则点到对角线的距离为().A. B. C. D.12.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图是二次函数的部分图象,由图象可知不等式的解集是_______.14.计算的结果是_____________.15.若,均为锐角,且满足,则__________.16.将边长为的正方形绕点按顺时针方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则=_________.(结果保留根号)17.如图,ΔABP是由ΔACD按顺时针方向旋转某一角度得到的,若∠BAP=60°,则在这一旋转过程中,旋转中心是____________,旋转角度为____________.18.如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则的值为_____.三、解答题(共78分)19.(8分)已知□ABCD边AB、AD的长是关于x的方程=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?(2)当AB=3时,求□ABCD的周长.20.(8分)某批发商以50元/千克的成本价购入了某产品800千克,他随时都能一次性卖出这种产品,但考虑到在不同的日期市场售价都不一样,为了能把握好最恰当的销售时机,该批发商查阅了上年度同期的经销数据,发现:①如果将这批产品保存5天时卖出,销售价为80元;②如果将这批产品保存10天时卖出,销售价为90元;③该产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系;④这种产品平均每天将损耗10千克,且最多保存15天;⑤每天保存产品的费用为100元.根据上述信息,请你帮该批发商确定在哪一天一次性卖出这批产品能获取最大利润,并求出这个最大利润.21.(8分)如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=在第一象限内交于点B(3,b),在第三象限内交于点C.(1)求双曲线的解析式;(2)直接写出不等式x﹣2>的解集;(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.22.(10分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)23.(10分)如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为多少?24.(10分)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′,若反比例函数的图像恰好经过A′B的中点D,求这个反比例函数的解析式.25.(12分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.26.某便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能够售出240件.经过调查发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能够多售出40件.(1)如果降价,那么每件要降价多少元才能使销售盈利达到1960元?(2)如果涨价,那么每件要涨价多少元オ能使销售盈利达到1980元?

参考答案一、选择题(每题4分,共48分)1、D【解题分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【题目详解】解:A、是一元一次方程,故A不符合题意;B、是二元二次方程,故B不符合题意;C、是分式方程,故C不符合题意;D、是一元二次方程,故D符合题意;故选择:D.【题目点拨】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.2、B【解题分析】依次把各个选项的横坐标代入反比例函数的解析式中,得到纵坐标的值,即可得到答案.【题目详解】解:A.把x=3代入得:,即A项错误,B.把x=-2代入得:,即B项正确,C.把x=-2代入得:,即C项错误,D.把x=-3代入得:,即D项错误,故选:B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.3、A【分析】根据正六边形的外接圆半径和正六边形的边长组成一个等边三角形,即可求解.【题目详解】解:正六边形的中心角为310°÷1=10°,那么外接圆的半径和正六边形的边长组成一个等边三角形,∴边长为1的正六边形外接圆的半径是1,即正六边形的半径长为1.故选:A.【题目点拨】本题考查了正多边形和圆,解答此题的关键是理解正六边形的外接圆半径和正六边形的边长组成的是一个等边三角形.4、C【分析】如图,过点A作AC⊥x轴于点C,构建矩形ABOC,根据反比例函数系数k的几何意义知|k|=四边形ABOC的面积.【题目详解】如图,过点A作AC⊥x轴于点C.则四边形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=−2.又∵函数图象位于第一象限,∴k>0,∴k=2.则反比函数解析式为.故选C.【题目点拨】此题考查反比例函数系数k的几何意义,解题关键在于掌握反比例函数的性质.5、D【分析】根据几何概型的意义,求出圆的面积,再求出正方形的面积,算出其比值即可.【题目详解】解:设正方形的边长为2a,则圆的半径为a,则圆的面积为:,正方形的面积为:,∴针扎到阴影区域的概率是,故选:D.【题目点拨】本题考查几何概型的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积和总面积的比,这个比即事件(A)发生的概率.6、A【解题分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.【题目详解】轴,,B两点纵坐标相同,设,,则,,,,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.7、C【分析】根据三角形的外角的性质计算,得到答案.【题目详解】∵∠GFA=90°,∠A=45°,∴∠CGD=45°,∴∠BDC=∠CGD+∠C=75°,故选:B.【题目点拨】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.8、C【分析】设出甲、乙提速前的速度,根据“乙到达B地追上甲”和“甲、乙同时从B出发,到相距900米”建立二元一次方程组求出速度即可判断A,然后根据乙到达C的时间求A、C之间的距离可判断B,根据乙到达C时甲距C的距离及此时速度可计算时间判断C,根据乙从C返回A时的速度和甲到达C时乙从C出发的时间即可计算路程判断出D.【题目详解】A.设甲提速前的速度为米/分,乙提速前的速度为米/分,由图象知,当乙到达B地追上甲时,有:,化简得:,当甲、乙同时从B地出发,甲、乙间的距离为900米时,有:,化简得:,解方程组:,得:,故甲提速前的速度为300米/分,乙提速前的速度为400米/分,故选项A正确;B.由图象知,甲出发23分钟后,乙到达C地,则A、C两地相距为:(米),故选项B正确;C.由图象知,乙到达C地时,甲距C地900米,这时,甲提速为(米/分),则甲到达C地还需要时间为:(分钟),所以,甲从A地到C地共用时为:(分钟),故选项C错误;D.由题意知,乙从C返回A时,速度为:(米/分钟),当甲到达C地时,乙从C出发了2.25分钟,此时,乙距A地距离为:(米),故选项D正确.故选:C.【题目点拨】本题为方程与函数图象的综合应用,正确分析函数图象,明确特殊点的意义是解题的关键.9、B【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【题目详解】解:将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:.故选:B.【题目点拨】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.10、A【分析】由切线的性质得出求出,证出,得出,得出,由直角三角形的性质得出,得出,再由直角三角形的性质即可得出结果.【题目详解】解:∵与AC相切于点D,故选A.【题目点拨】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出是解题的关键.11、B【分析】设DH与AC交于点M,易得EG为△CDH的中位线,所以DG=HG,然后证明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后设BH=a,则BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜边AM上的高即为G到AC的距离.【题目详解】如图,设DH与AC交于点M,过G作GN⊥AC于N,∵E、F分别是CD和AB的中点,∴EF∥BC∴EG为△CDH的中位线∴DG=HG由折叠的性质可知∠AGH=∠B=90°∴∠AGD=∠AGH=90°在△ADG和△AHG中,∵DG=HG,∠AGD=∠AGH,AG=AG∴△ADG≌△AHG(SAS)∴AD=AH,AG=AB,∠DAG=∠HAG由折叠的性质可知∠HAG=∠BAH,∴∠BAH=∠HAG=∠DAG=∠BAD=30°设BH=a,在Rt△ABH中,∠BAH=30°∴AH=2a∴BC=AD=AH=2a,AB=在Rt△ABC中,AB2+BC2=AC2即解得∴DH=2GH=2BH=,AG=AB=∵CH∥AD∴△CHM∽△ADM∴∴AM=AC=,HM=DH=∴GM=GH-HM=在Rt△AGM中,∴故选B.【题目点拨】本题考查了矩形的性质,折叠的性质,全等三角形与相似三角形的判定与性质,以及勾股定理的应用,解题的关键是求出∠BAH=30°,再利用勾股定理求出边长.12、B【解题分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.二、填空题(每题4分,共24分)13、【解题分析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【题目详解】由图像可知,二次函数的对称轴x=2,图像与x轴的一个交点为5,所以,另一交点为2-3=-1.∴x1=-1,x2=5.∴不等式的解集是.故答案为【题目点拨】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.14、1【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【题目详解】解:原式=2-2=1.故答案为1.【题目点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15、15【分析】利用绝对值和二次根式的非负性求得的值,然后确定两个角的度数,从而求解.【题目详解】解:由题意可知:∴∴∠α=60°,∠β=45°∴∠α-∠β=15°故答案为:15【题目点拨】本题考查绝对值及二次根式的非负性和特殊角的三角函数值,正确计算是本题的解题关键.16、【分析】先根据正方形的性质得到CD=1,∠CDA=90°,再利用旋转的性质得CF=,根据正方形的性质得∠CFE=45°,则可判断△DFH为等腰直角三角形,从而计算CF-CD即可.【题目详解】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF-CD=-1.故答案为-1.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.17、,【分析】根据条件得出AD=AP,AC=AB,确定旋转中心,根据条件得出∠DAP=∠CAB=90°,确定旋转角度数.【题目详解】解:∵△ABP是由△ACD按顺时针方向旋转而得,∴△ABP≌△ACD,∴∠DAC=∠PAB=60°,AD=AP,AC=AB,∴∠DAP=∠CAB=90°,∴△ABP是△ACD以点A为旋转中心顺时针旋转90°得到的.故答案为:A,90°【题目点拨】本题考查旋转的性质,明确旋转前后的图形大小和形状不变,正确确定对应角,对应边是解答此题的关键.18、【分析】设则,根据是平行四边形,可得,即,和,可得,由于是的中点,可得,因此,,,再通过便可得出.【题目详解】解:∵∴设,,则∵是平行四边形∴,∴,,∴∴又∵是的中点∴∴∴∴∴故答案为:【题目点拨】本题主要考查了平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,求证两个三角形相似,再通过比值等量代换表示出边的数量关系是解题的关键.三、解答题(共78分)19、(1);(2)1【分析】(1)由菱形的四边相等知方程有两个相等的实数根,据此利用根的判别式求解可得,注意验根;

(2)由AB=3知方程的一个解为3,代入方程求出m的值,从而还原方程,再利用根与系数的关系得出AB+AD的值,从而得出答案.【题目详解】解:(1)若四边形ABCD是菱形,则AB=AD,

所以方程有两个相等的实数根,

则△=(-m)2-4×1×12=0,

解得m=,检验:当m=时,x=,符合题意;当m=时,x=,不符合题意,故舍去.综上所述,当m为时,四边形ABCD是菱形.

(2)∵AB=3,

∴9-3m+12=0,

解得m=7,

∴方程为x2-7x+12=0,

则AB+AD=7,

∴平行四边形ABCD的周长为2(AB+AD)=1.【题目点拨】本题主要考查根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系,菱形和平行四边形的性质.20、保存15天时一次性卖出能获取最大利润,最大利润为23500元【分析】根据题意求出产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系y=2x+1,根据利润=售价×销售量-保管费-成本,可利用配方法求出最大利润.【题目详解】解:由题意可求得y=2x+1.设保存x天时一次性卖出这批产品所获得的利润为w元,则w=(800-10x)(2x+1)-100x-50×800=-20x2+800x+16000=-20(x-20)2+24000∵0<x≤15,∴x=15时,w最大=23500答:保存15天时一次性卖出能获取最大利润,最大利润为23500元.【题目点拨】此题主要考查了二次函数在实际生活中的应用,熟练掌握将实际生活中的问题转化为二次函数是解题的关键.21、(1)y=;(2)﹣1<x<0或x>3;(3)【分析】(1)把点B(3,b)代入y=x﹣2,得到B的坐标,然后根据待定系数法即可求得双曲线的解析式;(2)解析式联立求得C的坐标,然后根据图象即可求得;(3)求得直线OD的解析式,然后解析式联立求得D的坐标,根据三角形面积公式求得即可.【题目详解】(1)∵点B(3,b)在直线y=x﹣2(k≠0)上,∴b=3﹣2=1,∴B(3,1),∵双曲线y=经过点B,∴k=3×1=3,∴双曲线的解析式为y=;(2)解得或,∴C(﹣1,﹣3),由图象可知,不等式x﹣2>的解集是﹣1<x<0或x>3;(3)∵OD∥AB,∴直线OD的解析式为y=x,解,解得或,∴D(,),由直线y=x﹣2可知A(0,﹣2),∴OA=2,∴S△AOD==.【题目点拨】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.解决问题的关键是求得交点坐标.22、28.3海里【分析】过B作BD⊥AP于D,由已知条件求出AB=40,∠P=45°,在Rt△ABD中求出,在Rt△BDP中求出PB即可.【题目详解】解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40海里,∠P=75°-30°=45°,在Rt△ABD中,∵AB=40,∠A=30°,∴海里,在Rt△BDP中,∵∠P=45°,∴(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.【题目点拨】此题主要考查解直角三角形的应用-方向角问题,根据已知得出△PDB为等腰直角三角形是解题关键.23、5【分析】作辅助线构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH,得出DG和AG的长度,即可得出答案.【题目详解】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC•DH=10,=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=或(舍),故答案为:【题目点拨】本题考查的是三角形的综合,运用到了三角函数和全等的相关知识,需要熟练掌握相关基础知识.24、.【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.【题目详解】作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论