2024届贵州省黔东南州名校数学九年级第一学期期末教学质量检测试题含解析_第1页
2024届贵州省黔东南州名校数学九年级第一学期期末教学质量检测试题含解析_第2页
2024届贵州省黔东南州名校数学九年级第一学期期末教学质量检测试题含解析_第3页
2024届贵州省黔东南州名校数学九年级第一学期期末教学质量检测试题含解析_第4页
2024届贵州省黔东南州名校数学九年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省黔东南州名校数学九年级第一学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能2.已知的半径为,点到圆心的距离为,则点和的位置关系是()A.点在圆内 B.点在圆上 C.点在圆外 D.不能确定3.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C.现有下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0;④3a+c=0,其中,正确结论的个数是()A.1 B.2 C.3 D.44.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A. B. C. D.5.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣366.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再先向上平移1个单位B.先向左平移2个单位,再先向下平移1个单位C.先向右平移2个单位,再先向上平移1个单位D.先向右平移2个单位,再先向下平移1个单位7.下列方程有实数根的是A. B. C.+2x−1=0 D.8.下列二次根式中,是最简二次根式的是()A. B. C. D.9.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为1.其中,正确结论的个数为()A.1个 B.2个 C.1个 D.4个10.如图,已知是的直径,,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.1.根据上述数据,估计口袋中大约有_______个黄球12.一元二次方程(x﹣5)(x﹣7)=0的解为_____.13.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.14.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.15.方程x2﹣9x=0的根是_____.16.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.17.已知点A(m,1)与点B(3,n)关于原点对称,则m+n=_________。18.二次函数的图象与y轴的交点坐标是________.三、解答题(共66分)19.(10分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2),分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.20.(6分)如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.(1)求直线的解析式.(2)点为直线下方抛物线上的一点,连接,.当的面积最大时,连接,,点是线段的中点,点是线段上的一点,点是线段上的一点,求的最小值.(3)点是线段的中点,将抛物线与轴正方向平移得到新抛物线,经过点,的顶点为点,在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.21.(6分)计算:(1)()(2)-14+22.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.(1)求证:D是BC的中点(2)若DE=3,AD=1,求⊙O的半径.23.(8分)计算:4sin30°﹣cos45°+tan260°.24.(8分)如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,∠AED=90°,将AED绕点E顺时针旋转得到,A′E交AD于P,D′E交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动.(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.25.(10分)如图,反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标为1.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.(1)求反比例函数y=与直线y=x+m的函数关系式(2)求梯形ABCD的面积.26.(10分)如图,AB是€⊙O的直径,点C是€€⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交€€⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=,求线段BE的长.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】试题分析:本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键.设直线经过的点为A,若点A在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择.设直线经过的点为A,∵点A的坐标为(sin45°,cos30°),∴OA==,∵圆的半径为2,∴OA<2,∴点A在圆内,∴直线和圆一定相交.故选A.考点:1.直线与圆的位置关系;2.坐标与图形性质;3.特殊角的三角函数值.2、B【解题分析】根据点与圆的位置关系进行判断.【题目详解】∵⊙O的半径为6cm,P到圆心O的距离为6cm,

即OP=6,

∴点P在⊙O上.

故选:B.【题目点拨】本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.3、B【分析】由抛物线的开口方向,判断a与0的关系;由对称轴与y轴的位置关系,判断ab与0的关系;由抛物线与y轴的交点,判断c与0的关系,进而判断abc与0的关系,据此可判断①.由x=﹣2时,y=4a﹣2b+c,再结合图象x=﹣2时,y>0,即可得4a﹣2b+c与0的关系,据此可判断②.根据图象得对称轴为x=﹣>﹣1,即可得2a﹣b与0的关系,据此可判断③.由x=1时,y=a+b+c,再结合2a﹣b与0的关系,即可得3a+c与0的关系,据此可判断④.【题目详解】解:①∵抛物线的开口向下,∴a<0,∵对称轴位于y轴的左侧,∴a、b同号,即ab>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;②如图,当x=﹣2时,y>0,即4a﹣2b+c>0,故②正确;③对称轴为x=﹣>﹣1,得2a<b,即2a﹣b<0,故③错误;④∵当x=1时,y=0,∴0=a+b+c,又∵2a﹣b<0,即b>2a,∴0=a+b+c>a+2a+c=3a+c,即3a+c<0,故④错误.综上所述,①②正确,即有2个结论正确.故选:B.【题目点拨】本题考查二次函数图象位置与系数的关系.熟练掌握二次函数开口方向、对称轴、与坐标轴交点等性质,并充分运用数形结合是解题关键.4、C【解题分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【题目详解】解:当时,,即S与t是二次函数关系,有最小值,开口向上,当时,,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.【题目点拨】考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.5、B【解题分析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=(k<0)的图象经过点B,∴﹣4=,得k=﹣32.故选B.【题目点拨】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.6、B【解题分析】试题分析:因为函数y=x2的图象沿y轴向下平移1个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加1可得新函数y=x2﹣1;然后再沿x轴向左平移2个单位长度,可得新函数y=(x+2)2﹣1.解:∵函数y=x2的图象沿沿x轴向左平移2个单位长度,得,y=(x+2)2;然后y轴向下平移1个单位长度,得,y=(x+2)2﹣1;故可以得到函数y=(x+2)2﹣1的图象.故选B.考点:二次函数图象与几何变换.7、C【解题分析】A.∵x4>0,∴x4+2=0无解,故本选项不符合题意;B.∵≥0,∴=−1无解,故本选项不符合题意;C.∵x2+2x−1=0,=8>0,方程有实数根,故本选项符合题意;D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.故选C.8、C【分析】最简二次根式须同时满足两个条件:一是被开方数中不含分母,二是被开方数中不含能开的尽方的因数或因式,据此逐项判断即得答案.【题目详解】解:A、,故不是最简二次根式,本选项不符合题意;B、中含有分母,故不是最简二次根式,本选项不符合题意;C、是最简二次根式,故本选项符合题意;D、,故不是最简二次根式,本选项不符合题意.故选:C.【题目点拨】本题考查了最简二次根式的定义,属于基础题型,熟知概念是关键.9、D【解题分析】本题考察二次函数的基本性质,一元二次方程根的判别式等知识点.【题目详解】解:∵,∴抛物线的对称轴<0,∴该抛物线的对称轴在轴左侧,故①正确;∵抛物线与轴最多有一个交点,∴∴关于的方程中∴关于的方程无实数根,故②正确;∵抛物线与轴最多有一个交点,∴当时,≥0正确,故③正确;当时,,故④正确.故选D.【题目点拨】本题的解题关键是熟悉函数的系数之间的关系,二次函数和一元二次方程的关系,难点是第四问的证明,要考虑到不等式的转化.10、B【分析】根据同弧所对的圆周角相等可得∠E=∠B=40°,再根据直径所对的圆周角是直角得到∠ACE=90°,最后根据直角三角形两锐角互余可得结论.【题目详解】∵在⊙O中,∠E与∠B所对的弧是,∴∠E=∠B=40°,∵AE是⊙O的直径,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故选:B.【题目点拨】此题主要考查了圆周角定理以及直径所对的圆周角是直角和直角三角形两锐角互余等知识,求出∠E=40°,是解此题的关键.二、填空题(每小题3分,共24分)11、2【题目详解】解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.1,设黄球有x个,∴0.1(x+10)=10,解得x=2.答:口袋中黄色球的个数很可能是2个.12、x1=5,x2=7【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【题目详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【题目点拨】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.13、(,2).【题目详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【题目点拨】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.14、1【分析】由摸到红球和黑球的概率稳定在50%和30%附近得出口袋中得到白色球的概率,进而求出白球个数即可.【题目详解】设白球个数为:x个,∵摸到红球和黑球的概率稳定在50%和30%左右,∴口袋中得到白色球的概率为1−50%−30%=20%,∴=20%,解得:x=1,即白球的个数为1个,故答案为:1.【题目点拨】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.15、x1=0,x2=1【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【题目详解】解:x2﹣1x=0即x(x﹣1)=0,解得x1=0,x2=1.故答案为x1=0,x2=1.【题目点拨】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.16、.【解题分析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.考点:列表法与树状图法.17、-1【分析】根据两个点关于原点对称时,它们的坐标符号相反,可直接得到m=-3,n=-1进而得到答案.【题目详解】解:∵点A(m,1)与点B(3,n)关于原点对称,

∴m=-3,n=-1,

∴m+n=-1,

故答案为:-1.【题目点拨】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.18、【分析】求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标.【题目详解】把代入得:,∴该二次函数的图象与y轴的交点坐标为,故答案为.【题目点拨】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.三、解答题(共66分)19、(1)②;(2)±1;(3)<<或<<【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【题目详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,,∵,∴要使面积最小,则PM最小,即OP最小即可,当OP⊥时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:,故EF=1.在△AEF中,根据勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F点代入y=kx可得:.②当k>0时,同理可得k=1.故综上:.(3)记直线与x、y轴的交点为点D、C,则,,①当⊙B在直线CD右侧时,如下图所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直线与⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半径为,∴.当直线CD与⊙B相切时,,因为直线CD与⊙B相离,故BN>,此时BD>2,所以OB=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此时可利用勾股定理算得BD<,<=,则<<.②当⊙B在直线CD左侧时,同理可得:<<.故综上:<<或<<.【题目点拨】本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.20、(1);(2)3;(3)存在,点Q的坐标为或或或.【解题分析】【分析】(1)求出点A、B、E的坐标,设直线的解析式为,将点A和点E的坐标代入即可;(2)先求出直线CE解析式,过点P作轴,交CE与点F,设点P的坐标为,则点F,从而可表示出△EPC的面积,利用二次函数性质可求出x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M,当点O、N、M、H在一条直线上时,KM+MN+NK有最小值,最小值=GH,利用勾股定理求出GH即可;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为三种情况讨论求解即可.【题目详解】解:(1)当时,设直线的解析式为,将点A和点E的坐标代入得解得所以直线的解析式为.(2)设直线CE的解析式为,将点E的坐标代入得:解得:直线CE的解析式为如图,过点P作轴,交CE与点F设点P的坐标为,则点F则FP=∴当时,△EPC的面积最大,此时如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、MK是CB的中点,OD=1,OC=3K是BC的中点,∠OCB=60°

点O与点K关于CD对称点G与点O重合∴点G(0,0)点H与点K关于CP对称∴点H的坐标为当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH

的最小值为3.(3)如图经过点D,的顶点为点F∴点点G为CE的中点,当FG=FQ时,点或当GF=GQ时,点F与点关于直线对称点当QG=QF时,设点的坐标为由两点间的距离公式可得:,解得点的坐标为综上所述,点Q的坐标为或或或【题目点拨】本题考查了二次函数的图像与性质的应用,涉及的知识点主要有待定系数法求一次函数的解析式、三角函数、勾股定理、对称的坐标变换、两点间的距离公式、等腰三角形的性质及判定,综合性较强,灵活利用点坐标表示线段长是解题的关键.21、(1)-;(2)-.【分析】(1)根据二次根式混合运算法则计算即可;(2)代入特殊角的三角函数值,根据0指数幂、负整数指数幂、二次根式及绝对值的运算法则计算即可.【题目详解】(1)()=(2-2)-6+6×=22-6+=6-4-6+=-.(2)-14+===-【题目点拨】本题考查实数的混合运算,熟练掌握运算法则并熟记特殊角的三角函数值是解题关键.22、(1)证明见解析;(2)【分析】(1)根据圆周角定理、等腰三角形的三线合一的性质即可证得结论;(2)根据圆周角定理及等腰三角形的判定得到DE=BD=3,再根据勾股定理求出AB,即可得到半径的长.【题目详解】(1)∵AB是⊙O直径∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即点D是BC的中点;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=∠E,∴DE=DC,∵DC=BD,∴DE=BD=3,∵AD=1,又∠ADB=90°,∴AB=,∴⊙O的半径=.【题目点拨】此题考查圆周角定理,等腰三角形的三线合一的性质及等角对等边的判定,勾股定理.23、4.【分析】原式利用特殊角的三角函数值计算即可求出值.【题目详解】原式.【题目点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.24、(1)5;(2)∥,理由见解析;(3)【分析】(1)求出AE=,证明△ABE∽△DEA,由可求出AD的长;(2)过点E作EF⊥AD于点F,证明△PEF∽△QEC,再证△EPQ∽△A'ED',可得出∠EPQ=∠EA'D',则结论得证;(3)由(2)知PQ∥A′D′,取A′D′的中点N,可得出∠PEM为定值,则点M的运动路径为线段,即从AD的中点到DE的中点,由中位线定理可得出答案.【题目详解】解:(1)∵AB=2,BE=1,∠B=90°,∴AE===,∵∠AED=90°,∴∠EAD+∠ADE=90°,∵矩形ABCD中,∠ABC=∠BAD=90°,∴∠BAE+∠EAD=90°,∴∠BAE=∠ADE,∴△ABE∽△DEA,∴,∴,∴AD=5;(2)PQ∥A′D′,理由如下:∵,∠AED=90°∴==2,∵AD=BC=5,∴EC=BC﹣BE=5﹣1=4,过点E作EF⊥AD于点F,则∠FEC=90°,∵∠A'ED'=∠AED=90°,∴∠PEF=∠CEQ,∵∠C=∠PFE=90°,∴△PEF∽△QEC,∴,∵,∴,∴PQ∥A′D′;(3)连接EM,作MN⊥AE于N,由(2)知PQ∥A′D′,∴∠EPQ=∠A′=∠EAP,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴=为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长==.【题目点拨】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.25、(1)y=,y=x-4(2)s=6.5【解题分析】考点:反比例函数综合题.分析:(1)由于反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),则把A(6,2)分别代入两个解析式可求出k与b的值,从而确定反比例函数y=与直线y=x+m的函数关系式;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论