吉林省长春汽开区四校联考2024届数学九上期末学业质量监测试题含解析_第1页
吉林省长春汽开区四校联考2024届数学九上期末学业质量监测试题含解析_第2页
吉林省长春汽开区四校联考2024届数学九上期末学业质量监测试题含解析_第3页
吉林省长春汽开区四校联考2024届数学九上期末学业质量监测试题含解析_第4页
吉林省长春汽开区四校联考2024届数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春汽开区四校联考2024届数学九上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若,,为二次函数的图象上的三点,则,,的大小关系是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y22.如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为()A.65° B.50° C.30° D.25°3.已知函数:(1)xy=9;(2)y=;(3)y=-;(4)y=;(5)y=,其中反比例函数的个数为(

)A.1 B.2 C.3 D.44.袋中有5个白球,x个红球,从中随机摸出一个球,恰为红球的概率为,则x为A.25 B.20 C.15 D.105.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.6.下列事件中,是必然事件的是()A.某射击运动员射击一次,命中靶心B.抛一枚硬币,一定正面朝上C.打开电视机,它正在播放新闻联播D.三角形的内角和等于180°7.如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B的度数是()A.15° B.40° C.75° D.35°8.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使=0成立?则正确的结论是()A.m=0时成立 B.m=2时成立 C.m=0或2时成立 D.不存在9.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.一组对边平行,一组对角相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形10.的值为()A.2 B. C. D.11.若点P(﹣m,﹣3)在第四象限,则m满足()A.m>3 B.0<m≤3 C.m<0 D.m<0或m>312.﹣3的绝对值是()A.﹣3 B.3 C.- D.二、填空题(每题4分,共24分)13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.15.二次函数的解析式为,顶点坐标是__________.16.若关于x的一元二次方程的一个根为1,则k的值为__________.17.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.18.若一元二次方程的一个根是,则__________.三、解答题(共78分)19.(8分)已知:如图,反比例函数的图象与一次函数的图象交于点、点.(1)求一次函数和反比例函数的解析式;(2)求的面积;(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.20.(8分)解下列方程:(1)x2+2x﹣3=0;(2)x(x﹣4)=12﹣3x.21.(8分)如图1,在中,是的直径,交于点,过点的直线交于点,交的延长线于点.(1)求证:是的切线;(2)若,试求的长;(3)如图2,点是弧的中点,连结,交于点,若,求的值.22.(10分)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?23.(10分)不透明的袋中有四个小球,分别标有数字1、2、3、4,它们除了数字外都相同。第一次从中摸出一个小球,记录数字后放回袋中,第二次摇匀后再随机摸出一个小球.(1)求第一次摸出的小球所标数字是偶数的概率;(2)求两次摸出的小球所标数字相同的概率.24.(10分)车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.25.(12分)如图,已知和中,,,,,;(1)请说明的理由;(2)可以经过图形的变换得到,请你描述这个变换;(3)求的度数.26.如图,,D、E分别是半径OA和OB的中点,求证:CD=CE.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】试题分析:根据二次函数的解析式得出图象的开口向上,对称轴是直线x=﹣2,根据x>﹣2时,y随x的增大而增大,即可得出答案.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,A(﹣4,y1)关于直线x=﹣2的对称点是(0,y1),∵﹣<0<3,∴y2<y1<y3,故选B.点评:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.2、D【分析】根据圆周角定理计算即可.【题目详解】解:由圆周角定理得,,故选:D.【题目点拨】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、C【分析】直接根据反比例函数的定义判定即可.【题目详解】解:反比例函数有:xy=9;y=;y=-.故答案为C.【题目点拨】本题考查了反比例函数的定义,即形如y=(k≠0)的函数关系叫反比例函数关系.4、B【解题分析】考点:概率公式.分析:根据概率的求法,除去红球的概率,就是白球的概率.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从中任意取一个,恰为红球的概率为4/5,,那从中任意取一个,恰为白球的概率就为1/5,据题意得5/(5+x)=1/5,解得x=1.∴袋中有红球1个.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m/n5、C【解题分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【题目详解】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误。C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C【题目点拨】此题考查轴对称图形和中心对称图形,难度不大6、D【分析】根据必然事件、不可能事件、随机事件的概念解答即可.【题目详解】A.某射击运动员射击一次,命中靶心,是随机事件,故此选项错误;B.抛一枚硬币,一定正面朝上,是随机事件,故此选项错误;C.打开电视机,它正在播放新闻联播,是随机事件,故此选项错误;D.三角形的内角和等于180°,是必然事件.故选:D.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、D【分析】由,可知的度数,由圆周角定理可知,故能求出∠B.【题目详解】,

,

由圆周角定理可知(同弧所对的圆周角相等),

在三角形BDP中,

,

所以D选项是正确的.【题目点拨】本题主要考查圆周角定理的知识点,还考查了三角形内角和为的知识点,基础题不是很难.8、A【解题分析】∵x1,x2是关于x的一元二次方程x2-bx+b-2=0的两个实数根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,则故满足条件的b的值为0故选A.9、D【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【题目详解】A、对角线互相垂直平分的四边形是菱形,命题正确,不符合题意;B、一组对边平行,一组对角相等的四边形是平行四边形,命题正确,不符合题意;C、矩形的对角线相等,命题正确,不符合题意;D、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项符合题意.故选:D.【题目点拨】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.10、D【解题分析】根据特殊角的三角函数值及负指数幂的定义求解即可.【题目详解】故选:D【题目点拨】本题考查了特殊角的三角函数值及负指数幂的定义,比较简单,掌握定义仔细计算即可.11、C【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可.【题目详解】解:根据第四象限的点的横坐标是正数,可得﹣m>1,解得m<1.故选:C.【题目点拨】本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.12、B【分析】根据负数的绝对值是它的相反数,可得出答案.【题目详解】根据绝对值的性质得:|-1|=1.故选B.【题目点拨】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.二、填空题(每题4分,共24分)13、1【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【题目详解】边长为1的正六边形可以分成六个边长为1的正三角形,∴外接圆半径是1,故答案为:1.【题目点拨】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14、.【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC就可以结合勾股定理求出AC的长了.【题目详解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(1)1.∴OA=.故⊙O的半径为.故答案为:.15、【分析】由已知和抛物线的顶点式,直接判断顶点坐标.【题目详解】解:∵二次函数的解析式为:,∴二次函数图象的顶点坐标为:(-1,3).故答案为:(-1,3).【题目点拨】本题考查了抛物线的顶点坐标与抛物线解析式的关系,抛物线的顶点式:y=a(x-h)2+k,顶点坐标为(h,k).16、0【解题分析】把x=1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.17、1【解题分析】连接BD.根据圆周角定理可得.【题目详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【题目点拨】考核知识点:圆周角定理.理解定义是关键.18、1【分析】将x=1代入一元二次方程,即可求得m的值,本题得以解决.【题目详解】解:∵一元二次方程有一个根为x=1,

∴11-6+m=0,

解得,m=1,

故答案为1.【题目点拨】本题考查一元二次方程的解,解答本题的关键是明确题意,求出m的值.三、解答题(共78分)19、(1),y=x+3;(2)S△AOB=;(3)x>1,12,-4<a<0【分析】(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;

(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;

(3)根据A、B的坐标结合图象即可得出答案.【题目详解】(1)把A点(1,4)分别代入反比例函数解析式,一次函数解析式y=kx+b,得,k=1×4,1+b=4,解得,k=4,b=3,所以反比例函数解析式是,一次函数解析式y=x+3,(2)如图当X=-4时,y=-1,∴B(-4,-1),当y=0时,x+3=0,x=-3,∴C(-3,0),∴S△AOB=S△AOC+S△BOC=故答案为(3)∵B(-4,-1),A(1,4),

∴根据图象可知:当x>1或-4<x<0时,一次函数值大于反比例函数值.【题目点拨】本题考查了一次函数和反比例函数的交点问题,用待定系数法求一次函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.20、(1)x=﹣1或x=1;(2)x=4或x=﹣1.【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【题目详解】解:(1)∵x2+2x﹣1=0,∴(x+1)(x﹣1)=0,则x+1=0或x﹣1=0,解得x=﹣1或x=1;(2)∵x(x﹣4)+1(x﹣4)=0,∴(x﹣4)(x+1)=0,则x﹣4=0或x+1=0,解得x=4或x=﹣1.【题目点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21、(1)证明见解析(2)(3)【分析】(1)连接半径,根据已知条件结合圆的基本性质可推出,即,即可得证结论;(2)设,根据已知条件列出关于的方程、解方程即可得到圆心角,再求得半径,然后利用弧长公式即可得解;(3)由,设,然后根据已知条件利用圆的一些性质、勾股定理以及三角形的不同求法分别表示出、,再利用平行线的判定以及相似三角形的判定和性质即可求得结论.【题目详解】解:(1)连结,如图:∵是的直径∴∴∵∴∵∴∴∵在圆上∴是的切线.(2)设∵∴∴∵在中,∴∴∴∵∴∴连结,过作于点,如图:∵点是的中点∴∴设∴∴∴∵在中,∴∵,∴∴∴.故答案是:(1)证明见解析(2)(3)【题目点拨】本题考查了圆的相关性质、切线的判定、等腰三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、直角三角形的相关性质、锐角三角函数、三角形的外角性质以及弧长的计算公式等,综合性较强,但难度不大属中档题型.22、(1)见解析(2)P(积为奇数)=【分析】(1)用树状图列举出2次不放回实验的所有可能情况即可;(2)看是奇数的情况占所有情况的多少即可.【题目详解】(1)(2)P(积为奇数)=23、(1)(数字是偶数);(2)(数字相同)【分析】(1)利用概率公式求概率即可;(2)先列表,然后根据概率公式计算概率即可.【题目详解】解:(1)第一次摸出的小球共有4种等可能的结果,其中摸出的小球所标数字是偶数的结果有2种,∴(数字是偶数)=2÷4(2)列表如下:第二次第一次123411,12,13,14,121,22,23,24,231,32,33,34,341,42,43,44,4由表格可知:共有16种等可能的结果,其中两次摸出的小球所标数字相同的可能有4种∴(数字相同)=4÷16【题目点拨】此题考查的是求概率问题,掌握列表法和概率公式是解决此题的关键.24、(1);(2)【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到所有可能的情况,进一步即可求得结果.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论