2022年四川省南充市正源中学高三数学文联考试卷含解析_第1页
2022年四川省南充市正源中学高三数学文联考试卷含解析_第2页
2022年四川省南充市正源中学高三数学文联考试卷含解析_第3页
2022年四川省南充市正源中学高三数学文联考试卷含解析_第4页
2022年四川省南充市正源中学高三数学文联考试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四川省南充市正源中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定义:,在区域内任取一点,则、满足的概率为A.

B.

C.

D.参考答案:D略2.向量,满足||=1,||=,(+)⊥(2﹣),则向量与的夹角为()A.45° B.60° C.90° D.120°参考答案:C【考点】平面向量数量积的运算.【分析】设向量与的夹角为θ.利用(+)⊥(2﹣),可得(+)?(2﹣)=+=0,即可解出.【解答】解:设向量与的夹角为θ.∵(+)⊥(2﹣),∴(+)?(2﹣)=+==0,化为cosθ=0,∵θ∈[0,π],∴θ=90°.故选:C.3.设锐角的三内角、、所对边的边长分别为、、,且,,则的取值范围为

………(

)..

.参考答案:A4.一个几何体的三视图如图所示,则该几何体的体积为A. B.C. D.π参考答案:D5.在昆明市2014届第一次统测中我校的理科数学考试成绩,统计结果显示,假设我校参加此次考试的人数为420人,那么试估计此次考试中.我校成绩高于120分的有

人.参考答案:略6.“”是“”的(

)

参考答案:A略7.已知条件p:,条件q:,则p是q的(

)A.充分不必要条件

B.必要不充分条件C.充要条件

D.既非充分也非必要条件参考答案:8.如图,在等腰直角中,设为上靠近点的四等分点,过作的垂线,设为垂线上任一点,则

)A.

B.

C.

D.参考答案:B略9.已知数列{an}是公比不为1的等比数列,Sn为其前n项和,满足,且成等差数列,则()A.5 B.6 C.7 D.9参考答案:C【分析】设等比数列的公比为,且不为1,由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,再由等比数列的求和公式,可得答案.【详解】数列是公比不为l等比数列,满足,即且成等差数列,得,即,解得,则.故选:C.【点睛】本题考查等差数列中项性质和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.10.已知,则“”是“函数在上为减函数”的A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.不等式|x﹣1|<1的解集用区间表示为.参考答案:(0,2)【考点】绝对值三角不等式.【专题】计算题;转化思想;不等式的解法及应用.【分析】直接将不等式|x﹣1|<1等价为:﹣1<x﹣1<1,解出后再用区间表示即可.【解答】解:不等式|x﹣1|<1等价为:﹣1<x﹣1<1,解得,0<x<2,即原不等式的解集为{x|0<x<2},用区间表示为:(0,2),故答案为:(0,2).【点评】本题主要考查了绝对值不等式的解法,以及解集的表示方法,属于基础题.12.函数在区间上单调递增,则实数的取值范围是__________.参考答案:【分析】由求导公式和法则求出,由题意可得在区间上恒成立,设,从而转化为,结合变量的范围,以及取值范围,可求得其最大值,从而求得结果.【详解】,则,因为函数在上单调增,可得在上恒成立,即,令,则,,所以,因为在上是增函数,所以其最大值为,所以实数的取值范围是.【点睛】该题考查的是有关函数在给定区间上是增函数,求参数的取值范围的问题,涉及到的知识点有导数与单调性的关系,恒成立问题向最值问题转换,注意同角的正余弦的和与积的关系.13.设函数,.若存在两个零点,则的取值范围是

.参考答案:[-4,-2)14.在△ABC中,若sin2A+sin2B-sinAsinB=sin2C,且满足ab=4,则该三角形的面积为________.参考答案:15.已知函数,.当x∈R时,f(g(x))=

,g(f(x))=

.参考答案:1,0.【考点】函数的值.【专题】函数的性质及应用.【分析】由已知条件,利用x∈R的条件,能求出f(g(x)),g(f(x)).【解答】解:∵f(x)=,g(x)=,∴x∈R时,f(g(x))=f(1)=1,g(f(x))=g(1)=0.故答案为:1,0.【点评】本题考查函数值的求法,是基础题,解题时要注意分段函数的性质的灵活运用.16.如图,正方形边长是2,直线x+y﹣3=0与正方形交于两点,向正方形内投飞镖,则飞镖落在阴影部分内的概率是.参考答案:【考点】几何概型.【分析】根据几何概率的求法,可以得出镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:阴影部分是正方形去掉一个小三角形,设直线与正方形的两个交点为A,B,∴在直线AB的方程为x+y﹣3=0中,令x=2得A(2,1),令y=2得B(1,2).∴三角形ABC的面积为s==,则飞镖落在阴影部分的概率是:P=1﹣=1﹣=1﹣=.故答案为:.17.已知,则对应的的集合为

.参考答案:[-1,2]三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=AB,BD,CE相交于点F.(Ⅰ)求证:A,E,F,D四点共圆;(Ⅱ)若正△ABC的边长为2,求,A,E,F,D所在圆的半径.参考答案:考点:分析法和综合法.专题:计算题;证明题.分析:(I)依题意,可证得△BAD≌△CBE,从而得到∠ADB=∠BEC?∠ADF+∠AEF=π,即可证得A,E,F,D四点共圆;(Ⅱ)取AE的中点G,连接GD,可证得△AGD为正三角形,GA=GE=GD=,即点G是△AED外接圆的圆心,且圆G的半径为.解答: (Ⅰ)证明:∵AE=AB,∴BE=AB,∵在正△ABC中,AD=AC,∴AD=BE,又∵AB=BC,∠BAD=∠CBE,∴△BAD≌△CBE,∴∠ADB=∠BEC,即∠ADF+∠AEF=π,所以A,E,F,D四点共圆.…(Ⅱ)解:如图,取AE的中点G,连接GD,则AG=GE=AE,∵AE=AB,∴AG=GE=AB=,∵AD=AC=,∠DAE=60°,∴△AGD为正三角形,∴GD=AG=AD=,即GA=GE=GD=,所以点G是△AED外接圆的圆心,且圆G的半径为.由于A,E,F,D四点共圆,即A,E,F,D四点共圆G,其半径为.…点评:本题考查利用综合法进行证明,着重考查全等三角形的证明与四点共圆的证明,突出推理能力与分析运算能力的考查,属于难题.19.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,,(495,,……(510,,由此得到样本的频率分布直方图,如图4所示.(1)根据频率分布直方图,求重量超过505克的产品数量.

(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.

(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.

参考答案:略20.(2017?郴州三模)在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“直角距离”为L(P,Q)=|x1﹣x2|+|y1﹣y2|,已知点A(x,1)、B(1,2)、C(5,2)三点.(1)若L(A,B)>L(A,C),求x的取值范围;(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.参考答案:【考点】两点间距离公式的应用;函数恒成立问题.【分析】(1)根据定义写出L(A,B),L(A,C)的表达式,最后通过解不等式求出x的取值范围;(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立即当x∈R时,不等式|x﹣1|≤|x﹣5|+t恒成立,运用分离变量,即有t≥|x﹣1|﹣|x﹣5|恒成立,可用绝对值不等式的性质,求得右边的最大值为4,令t不小于4即可.【解答】解:(1)由定义得|x﹣1|+1>|x﹣5|+1,即|x﹣1|>|x﹣5|,两边平方得8x>24,解得x>3;(2)当x∈R时,不等式|x﹣1|≤|x﹣5|+t恒成立,也就是t≥|x﹣1|﹣|x﹣5|恒成立,因为|x﹣1|﹣|x﹣5|≤|(x﹣1)﹣(x﹣5)|=4,所以t≥4,tmin=4.故t的最小值为:4.【点评】本题考查新定义:直角距离的理解和运用,考查绝对值不等式的解法,以及不等式恒成立问题,转化为求函数的最值,属于中档题.21.(本题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程是.(Ⅰ)将曲线的极坐标方程化为直角坐标方程;(Ⅱ)若直线与曲线相交于、两点,且,求直线的倾斜角的值.参考答案:(Ⅰ)由得圆C的方程为……………4分(Ⅱ)将代入圆的方程得…………5分化简得……………6分设两点对应的参数分别为,则………7分所以……8分所以,,…………………10分22.已知{an}为等差数列,且满足a1+a3=8,a2+a4=12.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,若a3,ak+1,Sk成等比数列,求正整数k的值.参考答案:【考点】等差数列的通项公式;等差数列的前n项和;等比数列的通项公式.【专题】等差数列与等比数列.【分析】(Ⅰ)由题意可得首项和公差的方程组,解方程组可得通项公式;(Ⅱ)由(Ⅰ)可得Sn,进而可得a3,ak+1,Sk,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论