版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省潍坊诸城市第七中学数学九年级第一学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在开展“爱心捐助”的活动中,某团支部8名团员捐款的数额(单位:元)分别为3,5,6,5,6,5,5,10,这组数据的中位数是()A.3元 B.5元 C.5.5元 D.6元2.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.3.在同一坐标系中,二次函数的图象与一次函数的图象可能是()A. B.C. D.4.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为()A.7 B.14 C.6 D.155.已知a、b、c、d是比例线段.a=2、b=3、d=1.那么c等于()A.9 B.4 C.1 D.126.从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为().A. B. C. D.7.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A.等于2 B.等于 C.等于 D.无法确定8.抛物线的顶点坐标是A. B. C. D.9.如图,双曲线与直线相交于、两点,点坐标为,则点坐标为()A. B. C. D.10.某地质学家预测:在未来的20年内,F市发生地震的概率是.以下叙述正确的是()A.从现在起经过13至14年F市将会发生一次地震B.可以确定F市在未来20年内将会发生一次地震C.未来20年内,F市发生地震的可能性比没有发生地震的可能性大D.我们不能判断未来会发生什么事,因此没有人可以确定何时会有地震发生二、填空题(每小题3分,共24分)11.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.12.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为_____.13.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.14.如图,AB∥DE,AE与BD相交于点C.若AC=4,BC=2,CD=1,则CE的长为_____.15.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF的最小值是_____.16.如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.17.在Rt△ABC中,∠C=90°,若AC=3,AB=5,则cosB的值为__________.18.如图,点B是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并交反比例函数y=﹣(x<0)的图象于点A,以AB为边作平行四边形ABCD,其中C、D在x轴上,则平行四边形ABCD的面积为_____.三、解答题(共66分)19.(10分)如图,A(8,6)是反比例函数y=(x>0)在第一象限图象上一点,连接OA,过A作AB∥x轴,且AB=OA(B在A右侧),直线OB交反比例函数y=的图象于点M(1)求反比例函数y=的表达式;(2)求点M的坐标;(3)设直线AM关系式为y=nx+b,观察图象,请直接写出不等式nx+b﹣≤0的解集.20.(6分)如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AC=6,求DF的长.21.(6分)如图,已知抛物线与轴相交于、两点,与轴相交于点,若已知点的坐标为.(1)求抛物线的解析式;(2)求线段所在直线的解析式;(3)在抛物线的对称轴上是否存在点,使为等腰三角形?若存在,求出符合条件的点坐标;若不存在,请说明理由.22.(8分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).23.(8分)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求B、D两点的坐标;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.24.(8分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)25.(10分)如图,已知是的外接圆,是的直径,为外一点,平分,且.(1)求证:;(2)求证:与相切.26.(10分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C,已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】将这组数据从小到大的顺序排列,最中间两个位置的数的平均数为中位数.【题目详解】将这组数据从小到大的顺序排列3,5,5,5,5,6,6,10,最中间两个位置的数是5和5,所以中位数为(5+5)÷2=5(元),故选:B.【题目点拨】本题考查中位数,熟练掌握中位数的求法是解答的关键.2、C【分析】设这种植物每个支干长出x个小分支,根据主干、支干和小分支的总数是43,即可得出关于x的一元二次方程,解之取其正值即可得出结论【题目详解】设这种植物每个支干长出个小分支,依题意,得:,解得:(舍去),.故选C.【题目点拨】此题考查一元二次方程的应用,解题关键在于列出方程3、C【分析】根据二次函数、一次函数图像与系数的关系,对每个选项一一判断即可.【题目详解】A.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a>0,b<0,故A选项不可能.B.由一次函数图像可得:a>0,b<0;由二次函数图像可得:a>0,b>0,故B选项不可能.C.由一次函数图像可得:a<0,b>0;由二次函数图像可得:a<0,b>0,故C选项可能.D.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a<0,b<0,故D选项不可能.故选:C.【题目点拨】本题主要考查一次函数、二次函数图像与系数的关系,根据一次函数、二次函数图像判断系数的正负是解题关键.4、B【分析】根据“PA⊥PB,点A与点B关于原点O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQ⊥x轴于点Q,确定OP的最大值即可.【题目详解】∵PA⊥PB∴∠APB=90°∵点A与点B关于原点O对称,∴AO=BO∴AB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交○M于点,当点P位于位置时,OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5∵∴当点P在的延长线于○M的交点上时,OP取最大值,∴OP的最大值为3+2×2=7∴AB的最大值为7×2=14故答案选B.【题目点拨】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.5、B【分析】根据比例线段的定义得到a:b=c:d,即2:3=c:1,然后利用比例性质求解即可.【题目详解】∵a、b、c、d是比例线段,∴a:b=c:d,即2:3=c:1,∴3c=12,解得:c=2.故选:B.【题目点拨】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.6、B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【题目详解】解①得,,解②得,.∴.∵的值是不等式组的解,∴.方程,解得,.∵不是方程的解,∴或.∴满足条件的的值为,(个).∴概率为.故选.7、B【解题分析】如图分别过D作DE⊥Y轴于E,过C作CF⊥Y轴于F,则△ODE∽△OBF,∵OD:DB=1:2∴相似比=1:3∴面积比=OD:DB=1:9即又∴∴解得K=故选B8、A【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【题目详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【题目点拨】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.9、B【解题分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【题目详解】解:点A与B关于原点对称,点坐标为A点的坐标为(2,3).所以B选项是正确的.【题目点拨】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.10、C【分析】根据概率的意义,可知发生地震的概率是,说明发生地震的可能性大于不发生地震的可能性,从而可以解答本题.【题目详解】∵某地质学家预测:在未来的20年内,F市发生地震的概率是,∴未来20年内,F市发生地震的可能性比没有发生地震的可能性大,故选C.【题目点拨】本题主要考查概率的意义,发生地震的概率是,说明发生地震的可能性大于不发生地政的可能性,这是解答本题的关键.二、填空题(每小题3分,共24分)11、【解题分析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【题目详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【题目点拨】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.12、【分析】根据题意,由AAS证明△AEH≌△BFE,则BE=AH,根据相似比为,令EH=,AB=,设AE=,AH=,在直角三角形AEH中,利用勾股定理,即可求出的值,即可得到答案.【题目详解】解:在正方形EFGH与正方形ABCD中,∠A=∠B=90°,EF=EH,∠FEH=90°,∴∠AEH+∠AHE=90°,∠BEF+∠AEH=90°,∴∠AHE=∠BEF,∴△AEH≌△BFE(AAS),∴BE=AH,∵,令EH=,AB=,在直角三角形AEH中,设AE=,AH=AB-AE=,由勾股定理,得,即,解得:或,∵,∴,∴,∴;故答案为:.【题目点拨】本题考查了相似四边形的性质,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是利用勾股定理求出AE和BE的长度.13、1【分析】根据菱形的面积公式即可求解.【题目详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.【题目点拨】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.14、1【分析】先证明△ABC∽△EDC,然后利用相似比计算CE的长.【题目详解】解:∵AB∥DE,∴△ABC∽△EDC,∴,即,∴CE=1.故答案为1【题目点拨】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活应用相似三角形相似的性质进行几何计算.也考查了解直角三角形.15、【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【题目详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,∴=,∴y=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴x=时,y有最大值,∴CF的最大值为,∴DF的最小值为5﹣=,∴AF的最小值===,故答案为.【题目点拨】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.16、1.【分析】延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.【题目详解】如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC.∴∠M=∠CBM.∵BQ是∠CBP的平分线,∴∠PBM=∠CBM.∴∠M=∠PBM.∴BP=PM.∴EP+BP=EP+PM=EM.∵CQ=CE,∴EQ=2CQ.由EF∥BC得,△MEQ∽△BCQ,∴.∴EM=2BC=2×6=1,即EP+BP=1.故答案为:1.【题目点拨】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.17、【分析】先根据勾股定理求的BC的长,再根据余弦的定义即可求得结果.【题目详解】由题意得则故答案为:点睛:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.18、1.【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得AB的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解【题目详解】设A的纵坐标是b,则B的纵坐标也是b把y=b代入y=得,b=则x=,即B的横坐标是同理可得:A的横坐标是:则AB=-()=则S=×b=1.故答案为1【题目点拨】此题考查反比例函数系数k的几何意义,解题关键在于设A的纵坐标为b三、解答题(共66分)19、(1)y=;(2)M(1,4);(3)0<x≤8或x≥1.【分析】(1)根据待定系数法即可求得;(2)利用勾股定理求得AB=OA=10,由AB∥x轴即可得点B的坐标,即可求得直线OB的解析式,然后联立方程求得点M的坐标;(3)根据A、M点的坐标,结合图象即可求得.【题目详解】解:(1)∵A(8,6)在反比例函数图象上∴6=,即m=48,∴反比例函数y=的表达式为y=;(2)∵A(8,6),作AC⊥x轴,由勾股定理得OA=10,∵AB=OA,∴AB=10,∴B(18,6),设直线OB的关系式为y=kx,∴6=18k,∴k=,∴直线OB的关系式为y=x,由,解得x=±1又∵在第一象限∴x=1故M(1,4);(3)∵A(8,6),M(1,4),观察图象,不等式nx+b﹣≤0的解集为:0<x≤8或x≥1.【题目点拨】本题主要考查一次函数与反比例函数的交点问题,解题的关键是掌握待定系数法求函数解析式及求直线、双曲线交点的坐标.20、(1)证明见解析;(2).【分析】(1)连接OC,先证明OC∥AE,从而得∠OCA=∠EAC,再利用OA=OC得∠OAC=∠OCA,等量代换即可证得答案;(2)设OC交BD于点G,连接DC,先证明△ACD∽△AEC,从而利用相似三角形的性质解得,再利用=cos∠FDC,代入相关线段的长可求得DF.【题目详解】(1)证明:如图,连接OC∵过点C的切线与AB的延长线垂直于点E,∴OC⊥CE,CE⊥AE∴OC∥AE∴∠OCA=∠EAC∵OA=OC∴∠OAC=∠OCA∴∠OAC=∠EAC,即AC平分∠BAD;(2)如图,设OC交BD于点G,连接DC∵AD为直径∴∠ACD=90°,∠ABD=90°∵CE⊥AE∴DB∥CE∵OC⊥CE∴OC⊥BD∴DG=BG∵∠OAC=∠EAC,∠ACD=90°=∠E∴△ACD∽△AEC∴∵⊙O的半径为,AC=6∴AD=7,∴∴易得四边形BECG为矩形∴DG=BG=∵=cos∠FDC∴解得:∴DF的长为.【题目点拨】本题考查相似三角形的性质,借助辅助线,判定△ACD∽△AEC,再根据相似三角形的性质求解.21、(1);(2);(3)存在,(2,2)或(2,-2)或(2,0)或(2,)【分析】(1)将A点代入抛物线的解析式即可求得答案;(2)先求得点B、点C的坐标,利用待定系数法即可求得直线BC的解析式;(3)设出P点坐标,然后表示出△ACP的三边长度,分三种情况计论,根据腰相等建立方程,求解即可.【题目详解】(1)将点代入中,得:,解得:,∴抛物线的解析式为;(2)当时,,∴点C的坐标为(0,4),当时,,解得:,∴点B的坐标为(6,0),设直线BC的解析式为,将点B(6,0),点C(0,4)代入,得:,∴,∴直线BC的解析式为,(3)抛物线的对称轴为,假设存在点P,设,则,,,∵△ACP为等腰三角形,①当时,,解之得:,∴点P的坐标为(2,2)或(2,-2);②当时,,解之得:或(舍去),∴点P的坐标为(2,0)或(2,8),设直线AC的解析式为,将点A(-2,0)、C(0,4)代入得,解得:,∴直线AC的解析式为,当时,,∴点(2,8)在直线AC上,∴A、C、P在同一直线上,点(2,8)应舍去;③当时,,解之得:,∴点P的坐标为(2,);综上,符合条件的点P存在,坐标为:(2,2)或(2,-2)或(2,0)或(2,).【题目点拨】本题为二次函数的综合应用,涉及待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数的性质,方程思想及分类讨论思想等知识点.在(3)中利用点P的坐标分别表示出AP、CP的长是解题的关键.22、(1);(2)0.6【分析】(1)装有张卡片,其中有2张偶数,直接用公式求概率即可.(2)根据抽取结果画树状图或列表都可以,再根据树状图来求符合条件的概率.【题目详解】解:(1)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,5张卡片中偶数有2张,抽出偶数卡片的概率=(2)画树状如图概率为【题目点拨】本题考查了用概率的公式来求概率和树状统计图或列表统计图.23、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐标为(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)【分析】(1)将A(﹣1,0)、C(0,﹣3)代入y=x2+bx+c,待定系数法即可求得抛物线的解析式,再配方即可得到顶点D的坐标,根据y=0,可得点B的坐标;(2)根据BC的解析式和抛物线的解析式,设P(x,x2﹣2x﹣3),则M(x,x﹣3),表示PM的长,根据二次函数的最值可得:当x=时,PM的最大值,此时P(,﹣),进而确定F的位置:在x轴的负半轴了取一点K,使∠OCK=30°,过F作FN⊥CK于N,当N、F、H三点共线时,如图2,FH+FN最小,即PH+HF+CF的值最小,根据含30°角的直角三角形的性质,即可得结论;(3)先根据旋转确定Q的位置,与点A重合,根据菱形的判定画图,分4种情况讨论:分别以DQ为边和对角线进行讨论,根据菱形的边长相等和平移的性质,可得点S的坐标.【题目详解】(1)把A(﹣1,0),点C(0,﹣3)代入抛物线y=x2+bx+c,得:,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D(1,﹣4),当y=0时,x2﹣2x﹣3=0,解得:x=3或﹣1,∴B(3,0);(2)∵B(3,0),C(0,﹣3),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=x﹣3,设P(x,x2﹣2x﹣3),则M(x,x﹣3),∴PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+,当x=时,PM有最大值,此时P(,﹣),在x轴的负半轴了取一点K,使∠OCK=30°,过F作FN⊥CK于N,∴FN=CF,当N、F、H三点共线时,如图1,FH+FN最小,即PH+HF+CF的值最小,∵Rt△OCK中,∠OCK=30°,OC=3,∴OK=,∵OH=,∴KH=+,∵Rt△KNH中,∠KHN=30°,∴KN=KH=,∴NH=KN=,∴PH+HF+CF的最小值=PH+NH==;(3)Rt△OFH中,∠OHF=30°,OH=,∴OF=OF'=,由旋转得:∠FOF'=60°∴∠QOF'=30°,∴在Rt△QF'O中,QF'=OF'÷=÷=,OQ=2QF'=2×=1,∴Q与A重合,即Q(﹣1,0)分4种情况:①如图2,以QD为边时,由菱形和抛物线的对称性可得S(3,0);②如图3,以QD为边时,由勾股定理得:AD=,∵四边形DQSR是菱形,∴QS=AD=2,QS∥DR,∴S(﹣1,﹣2);③如图4,同理可得:S(﹣1,2);④如图5,作AD的中垂线,交对称轴于R,可得菱形QSDR,∵A(﹣1,0),D(1,﹣4),∴AD的中点N的坐标为(0,﹣2),且AD=2,∴DN=,cos∠ADR=,∴DR=,∴QS=DR=,∴S(﹣1,﹣);综上,S的坐标为(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣).【题目点拨】本题主要考查二次函数和几何图形的综合,添加合适的辅助线构造含30°角的直角三角形,利用菱形的判定定理,进行分类讨论,是解题的关键.24、(1)甲选择A部电影的概率为;(2)甲、乙、丙3人选择同一部电影的概率为.【解题分析】(1)甲可选择电影A或B,根据概率公式即可得甲选择A部电影的概率.(2)用树状图表示甲、乙、丙3人选择电影的所有情况,由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,根据概率公式即可得出答案.【题目详解】(1)∵甲可选择电影A或B,∴甲选择A部电影的概率P=,答:甲选择A部电影的概率为;(2)甲、乙、丙3人选择电
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年货场阶段性借用合同
- 2025年度智能化砖厂设备承包合同书4篇
- 2024预制场地租赁与绿色建筑评价服务合同3篇
- 2024食堂人员培训计划与聘用合同规范3篇
- 2025年度时尚饰品代理招商合同协议4篇
- 2024版楼顶场地出租合同
- 2025年度户外活动场地草籽草坪铺设合同范本3篇
- 2025年度智能办公场地租赁及物联网技术应用合同4篇
- 2024食品行业智能物流合同
- 2025年度住宅小区楼顶太阳能设备安装合同4篇
- 冬春季呼吸道传染病防控
- 【物 理】2024-2025学年八年级上册物理寒假作业人教版
- 2024年计算机二级WPS考试题库380题(含答案)
- 中医药膳学课件
- 教科版二年级下册科学第一单元测试卷(含答案)
- 春节值班安排通知
- 下腔静脉滤器置入术共27张课件
- 人教小学四年级上册数学知识点归纳
- 2022年上海健康医学院职业适应性测试题库及答案解析
- 安徽省血液净化专科护士临床培训基地条件
- 脑桥解剖ppt课件
评论
0/150
提交评论