版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省陇南市第八中学数学九上期末达标测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()A.2 B. C.1 D.2.如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条 B.4条C.5条 D.6条3.“泱泱华夏,浩浩千秋.于以求之?旸谷之东.山其何辉,韫卞和之美玉……”这是武汉16岁女孩陈天羽用文言文写70周年阅兵的观后感.小汀州同学把这篇气势磅礴、文采飞扬的文章放到自己的微博上,并决定用微博转发的方式传播.他设计了如下的传播规则:将文章发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.124.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=-1,则b=4;④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.其中结论正确的序号是()A.①② B.①②③ C.①②④ D.②③④5.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.6.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55° B.70° C.125° D.145°7.如图,中,,,点是的外心.则()A. B. C. D.8.如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是()A. B. C. D.9.下列汽车标志中,可以看作是中心对称图形的是A. B. C. D.10.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)二、填空题(每小题3分,共24分)11.如图,在中,,,为边上的一点,且,若的面积为,则的面积为__________.12.函数中,自变量的取值范围是________.13.已知=,则的值是_______.14.已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是______.15.如图,在△ABC中DE∥BC,点D在AB边上,点E在AC边上,且AD:DB=2:3,四边形DBCE的面积是10.5,则△ADE的面积是____.16.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是_____.17.已知圆的半径是,则该圆的内接正六边形的面积是__________18.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.三、解答题(共66分)19.(10分)如图,是△ABC的外接圆,AB是的直径,CD是△ABC的高.(1)求证:△ACD∽△CBD;(2)若AD=2,CD=4,求BD的长.20.(6分)如图,已知一次函数y1=﹣x+a与x轴、y轴分别交于点D、C两点和反比例函数交于A、B两点,且点A的坐标是(1,3),点B的坐标是(3,m)(1)求a,k,m的值;(2)求C、D两点的坐标,并求△AOB的面积.21.(6分)如图,已知抛物线y=﹣x2+bx+c的图象经过(1,0),(0,3)两点.(1)求b,c的值;(2)写出当y>0时,x的取值范围.22.(8分)如图,为的直径,、为上两点,,,垂足为.直线交的延长线于点,连接.(1)判断与的位置关系,并说明理由;(2)求证:.23.(8分)已知关于x的一元二次方程x1=1(1-m)x-m1有两个实数根为x1,x1.(1)求m的取值范围;(1)设y=x1+x1,求当m为何值时,y有最小值.24.(8分)如图,中,是的角平分线,,在边上,以为直径的半圆经过点,交于点.(1)求证:是的切线;(2)已知,的半径为,求图中阴影部分的面积.(最后结果保留根号和)25.(10分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2),分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.26.(10分)某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?
参考答案一、选择题(每小题3分,共30分)1、B【分析】在直角三角形ACD中,根据正切的意义可求解.【题目详解】如图:在RtACD中,tanC.故选B.【题目点拨】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.2、D【题目详解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6条线段为1.故选D.3、B【分析】根据传播规则结合经过两轮转发后共有111个人参与了宣传活动,即可得出关于n的一元二次方程,解之取其正值即可得出结论.【题目详解】解:依题意,得:1+n+n2=111,解得:n1=10,n2=﹣11(不合题意,舍去).故选:B.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4、C【分析】根据二次函数图像的基本性质依次进行判断即可.【题目详解】①当x=0时,y=m,∴点C的坐标为(0,m),该项正确;②当m=0时,原函数解析式为:,此时对称轴为:,且A点交于原点,∴B点坐标为:(2,0),即AB=2,∴D点坐标为:(1,1),根据勾股定理可得:BD=AD=,∴△ABD为等腰三角形,∵,∴△ABD为等腰直角三角形,该项正确;③由解析式得其对称轴为:,利用其图像对称性,∴当若a=-1,则b=3,该项错误;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q点离对称轴较远,∴>,该项正确;综上所述,①②④正确,③错误,故选:C.【题目点拨】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键.5、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【题目详解】由勾股定理得,,则,故选:B.【题目点拨】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.6、C【解题分析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋转角等于125°.故选C.7、C【分析】根据三角形内角和定理求出∠A=70°,根据圆周角定理解答即可.【题目详解】解:∵∠ABC=50°,∠ACB=60°
∴∠A=70°
∵点O是△ABC的外心,
∴∠BOC=2∠A=140°,
故选:C【题目点拨】本题考查的是三角形内角和定理、外心的定义和圆周角定理.8、D【分析】过点作x轴的垂线,垂足为M,通过条件求出,MO的长即可得到的坐标.【题目详解】解:过点作x轴的垂线,垂足为M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐标为.故选:D.【题目点拨】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9、A【题目详解】考点:中心对称图形.分析:根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:A.旋转180°,与原图形能够完全重合是中心对称图形;故此选项正确;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;故选A.10、D【解题分析】解:点M(1,﹣2)与点N关于原点对称,点N的坐标为故选D.【题目点拨】本题考查关于原点对称的点坐标特征:横坐标和纵坐标都互为相反数.二、填空题(每小题3分,共24分)11、1【分析】首先判定△ADC∽△BAC,然后得到相似比,根据面积比等于相似比的平方可求出△BAC的面积,减去△ADC的面积即为△ABD的面积.【题目详解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比则面积比∴∴故答案为:1.【题目点拨】本题考查了相似三角形的判定与性质,熟记相似三角形的面积比等于相似比的平方是解题的关键.12、【分析】根据分式有意义的条件是分母不为0;可得关系式x﹣1≠0,求解可得自变量x的取值范围.【题目详解】根据题意,有x﹣1≠0,解得:x≠1.故答案为:x≠1.【题目点拨】本题考查了分式有意义的条件.掌握分式有意义的条件是分母不等于0是解答本题的关键.13、【分析】根据合比性质:,可得答案.【题目详解】由合比性质,得,
故答案为:.【题目点拨】此题考查比例的性质,利用合比性质是解题关键.14、3π.【解题分析】∵圆锥的底面圆半径是1,∴圆锥的底面圆的周长=2π,则圆锥的侧面积=×2π×3=3π,故答案为3π.15、1【分析】由AD:DB=1:3,可以得到相似比为1:5,所以得到面积比为4:15,设△ADE的面积为4x,则△ABC的面积为15x,故四边形DBCE的面积为11x,根据题意四边形的面积为10.5,可以求出x,即可求出△ADE的面积.【题目详解】∵DE∥BC∴,∵AD:DB=1:3∴相似比=1:5
∴面积比为4:15设△ADE的面积为4x,则△ABC的面积为15x,故四边形DBCE的面积为11x∴11x=10.5,解得x=0.5∴△ADE的面积为:4×0.5=1故答案为:1.【题目点拨】本题主要考查了相似三角形,熟练面积比等于相似比的平方以及准确的列出方程是解决本题的关键.16、【解题分析】试题解析:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0);故答案为(,0).17、【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【题目详解】解:连接、,作于,等边三角形的边长是2,,等边三角形的面积是,正六边形的面积是:;故答案为:.【题目点拨】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.18、1.【解题分析】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,三、解答题(共66分)19、(1)证明见解析;(2).【分析】(1)由垂直的定义,得到,由同角的余角相等,得到,即可得到结论成立;(2)由(1)可知,得到,即可求出BD.【题目详解】(1)证明:∵是的直径,∴.∵,∴.∵,∴.∵,,∴.(2)解:由(1)得,∴,即,∴.【题目点拨】本题考查了圆周角定理,相似三角形的判定和性质,同角的余角相等,解题的关键是熟练掌握相似三角形的判定和性质进行解题.20、(1)1,3,1;(2)(0,1),(1,3),1【分析】(1)由于已知一次函数y1=-x+a和反比例函数交于A、B两点,且点A的坐标是(1,3),把A的坐标代入反比例函数解析式中即可确定k的值,然后利用解析式即可确定点B的坐标,最后利用A或B坐标即可确定a的值;
(2)利用(1)中求出的直线的解析式可以确定C,D的坐标,然后利用面积的割补法可以求出△AOB的面积.【题目详解】解:(1)∵反比例函数经过A、B两点,且点A的坐标是(1,3),∴3=,∴k=3,而点B的坐标是(3,m),∴m==1,∵一次函数y1=﹣x+a经过A点,且点A的坐标是(1,3),∴3=﹣1+a,∴a=1.(2)∵y1=﹣x+1,当x=0时,y=1,当y=0时,x=1,∴C的坐标为(0,1),D的坐标为(1,0),∴S△AOB=S△COB﹣S△COA=×1×3﹣×1×1=1.【题目点拨】本题主要考查了待定系数法求反比例函数与一次函数的解析式和函数图象中的面积问题,求面积体现了数形结合的思想,做此类题一定要正确理解图形几何意义.21、(1)b=-2,c=3;(2)当y>0时,﹣3<x<1.【分析】(1)由题意求得b、c的值;
(2)当y>0时,即图象在第一、二象限的部分,再求出抛物线和x轴的两个交点坐标,即得x的取值范围;【题目详解】(1)根据题意,将(1,0)、(0,3)代入,得:解得:(2)由(1)知抛物线的解析式为当y=0时,解得:或x=1,则抛物线与x轴的交点为∴当y>0时,﹣3<x<1.【题目点拨】考查待定系数法求二次函数解析式,抛物线与x轴的交点,二次函数的性质,数形结合是解题的关键.22、(1)EF与⊙O相切,理由见解析;(2)证明见解析.【分析】(1)连接OC,由题意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切线;(2)连接BC,根据直径所对圆周角是直角证得△ACF∽△ABC,即可证得结论.【题目详解】(1)EF与⊙O相切,理由如下:如图,连接OC,∵,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF是⊙O的切线;(2)连接BC,∵AB为直径,∴∠BCA=90°,又∵∠FAC=∠BAC,∴△ACF∽△ABC,∴,∴.【题目点拨】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,相似三角形的判定和性质,熟练运用切线的判定和性质是本题的关键.23、(1)m≤;(1)m=【分析】(1)若一元二次方程有两个实数根,则根的判别式△=b1-4ac≥0,建立关于m的不等式,可求出m的取值范围;
(1)根据根与系数的关系可得出x1+x1的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y有最小值时及对应的m值.【题目详解】解:(1)将原方程整理为x1+1(m-1)x+m1=0;∵原方程有两个实数根,∴△=〔1(m-1)〕1-4m1=-8m+4≥0,∴m≤(1)∵x1,x1为方程的两根,∴y=x1+x1=-1m+1,∵-1<0∴y随m的增大而减小∵m≤∴当m=时,y有最小值.【题目点拨】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(1)题的关键.24、(1)证明见解析;(2)6﹣.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF−S扇形EOF求解即可.【题目详解】(1)连接OE.∵OB=OE∴∠OBE=∠OEB∵BE是△ABC的角平分线∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°又∵OE为半径∴AC是圆O的切线(2)连接OF.∵圆O的半径为4,∠A=30°
,∴AO=2OE=8,∴AE=4,∠AOE=60°,∴AB=12,∴BC=AB=6
AC=6,∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2,∠EOF=60°.∴S梯形OECF=(2+4)×2=6.S扇形EOF=∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣.【题目点拨】本题考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线.25、(1)②;(2)±1;(3)<<或<<【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【题目详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,,∵,∴要使面积最小,则PM最小,即OP最小即可,当OP⊥时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:,故EF=1.在△AEF中,根据勾股定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位电路维保合同范例
- 拆迁店面合同模板
- 2024年咸宁客运从业资格证
- 2024年客运考试口诀大全图片
- 2024年南宁客运驾驶员试题题库
- 华师大数学九年级上教案
- 青岛市第十五届职业技能大赛技术文件-机器人操作与应用
- 山东省夏津县2024-2025学年九年级上学期期中语文试题
- 古建筑修缮工程文明施工、环境保护保证措施5
- 学会倾听心理教案范文大全
- 2024届四川省绵阳市高三上学期一诊模拟考试生物试题(解析版)
- 小学神话故事教学的几点做法
- DZ∕T 0288-2015 区域地下水污染调查评价规范(正式版)
- 先进制造技术实验室
- 实验室CNAS认可准则(ISO17025:2017)转版全套体系文件(手册+程序文件+记录表)2020版
- 公交行业消防安全培训
- 部编版六年级语文上册(习作:围绕中心意思写)
- 企业内部知识竞赛方案
- 格尔木盐化(集团)有限责任公司察尔汗盐矿矿山地质环境保护与土地复垦方案
- 2023-2024学年北京版三年级上册期中模拟检测数学试卷(含答案解析)
- 养老家庭照护床位服务意向书、综合评估表、适老化改造和老年用品配置清单、养老家庭照护床位服务协议(范本)
评论
0/150
提交评论