




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴市上虞实验中学2024届数学九年级第一学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是()A. B. C. D.102.华为手机锁屏密码是6位数,若密码的前4位数字已经知道,则一次解锁该手机密码的概率是()A. B. C. D.3.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m4.下列选项中,y是x的反比例函数的是()A. B. C. D.5.如图,中,,将绕着点旋转至,点的对应点点恰好落在边上.若,,则的长为()A. B. C. D.6.抛物线y=(x﹣4)2﹣5的顶点坐标和开口方向分别是()A.(4,﹣5),开口向上 B.(4,﹣5),开口向下C.(﹣4,﹣5),开口向上 D.(﹣4,﹣5),开口向下7.如图,中,,则的值为()A. B. C. D.8.如图所示是滨河公园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2) B.(4)(3)(1)(2)C.(4)(3)(2)(1) D.(2)(4)(3)(1)9.已知关于x的一元二次方程有一个根为,则a的值为()A.0 B. C.1 D.10.抛物线的顶点坐标是()A.(0,-1) B.(-1,1) C.(-1,0) D.(1,0)二、填空题(每小题3分,共24分)11.如图,平行四边形中,,.以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点.若用扇形围成一个圆维的侧面,记这个圆锥的底面半径为;若用扇形围成另一个圆锥的侧面,记这个圆锥的底面半径为,则的值为______.12.若二次函数的图象与x轴交于A,B两点,则的值为______.13.如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.14.如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为____.
15.已知一条抛物线,以下说法:①对称轴为,当时,随的增大而增大;②;③顶点坐标为;④开口向上.其中正确的是______.(只填序号)16.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.17.如图,AB为的直径,弦CD⊥AB于点E,点F在圆上,且=,BE=2,CD=8,CF交AB于点G,则弦CF的长度为__________,AG的长为____________.18.某10人数学小组的一次测试中,有4人的成绩都是80分,其他6人的成绩都是90分,则这个小组成绩的平均数等于_____分.三、解答题(共66分)19.(10分)如图,AB为⊙O的弦,若OA⊥OD,AB、OD相交于点C,且CD=BD.(1)判定BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.20.(6分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.21.(6分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF//BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.22.(8分)若直线与双曲线的交点为,求的值.23.(8分)如图,在中,,是绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.求旋转角的大小;若,,求BE的长.24.(8分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研其性质——运用函数解决问题”的学习过程.如图,在平面直角坐标系中己经绘制了一条直线.另一函数与的函数关系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直线的解析式;(2)请根据列表中的数据,绘制出函数的近似图像;(3)请根据所学知识并结合上述信息拟合出函数的解折式,并求出与的交点坐标.25.(10分)在平面直角坐标系中,抛物线y=﹣4x2﹣8mx﹣m2+2m的顶点p.(1)点p的坐标为(含m的式子表示)(2)当﹣1≤x≤1时,y的最大值为5,则m的值为多少;(3)若抛物线与x轴(不包括x轴上的点)所围成的封闭区域只含有1个整数点,求m的取值范围.26.(10分)为了测量竖直旗杆的高度,某数学兴趣小组在地面上的点处竖直放了一根标杆,并在地面上放置一块平面镜,已知旗杆底端点、点、点在同一条直线上.该兴趣小组在标杆顶端点恰好通过平面镜观测到旗杆顶点,在点观测旗杆顶点的仰角为.观测点的俯角为,已知标杆的长度为米,问旗杆的高度为多少米?(结果保留根号)
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【题目详解】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或-2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选B.【题目点拨】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.2、C【分析】根据排列组合,求出最后两位数字共存在多少种情况,即可求解一次解锁该手机密码的概率.【题目详解】根据题意,我们只需解锁后两位密码即可,两位数字的排列有种可能∴一次解锁该手机密码的概率是故答案为:C.【题目点拨】本题考查了排列组合的问题,掌握排列组合的公式是解题的关键.3、A【分析】根据BC的长度和的值计算出AC的长度即可解答.【题目详解】解:因为,又BC=30,所以,,解得:AC=75m,所以,故选A.【题目点拨】本题考查了正切三角函数,熟练掌握是解题的关键.4、C【解题分析】根据反比例函数的定义“一般的,如果两个变量x,y之间的关系可以表示成,其中为常数,,我们就叫y是x的反比例函数”判定即可.【题目详解】A、x的指数是,不符定义B、x的指数是1,y与x是成正比例的,不符定义C、可改写成,符合定义D、当是,函数为,是常数函数,不符定义故选:C.【题目点拨】本题考查了反比例函数的定义,熟记定义是解题关键.5、A【分析】先在直角三角形ABC中,求出AB,BC,然后证明△ABD为等边三角形,得出BD=AB=2,再根据CD=BC-BD即可得出结果.【题目详解】解:在Rt△ABC中,AC=2,∠B=60°,∴BC=2AB,BC2=AC2+AB2,∴4AB2=AC2+AB2,
∴AB=2,BC=4,
由旋转得,AD=AB,
∵∠B=60°,∴△ABD为等边三角形,
∴BD=AB=2,
∴CD=BC-BD=4-2=2,
故选:A.【题目点拨】此题主要考查了旋转的性质,含30°角的直角三角形的性质,勾股定理以及等边三角形的判定与性质,解本题的关键是综合运用基本性质.6、A【解题分析】根据y=a(x﹣h)2+k,a>0时图象开口向上,a<0时图象开口向下,顶点坐标是(h,k),对称轴是x=h,可得答案.【题目详解】由y=(x﹣4)2﹣5,得开口方向向上,顶点坐标(4,﹣5).故选:A.【题目点拨】本题考查了二次函数的性质,利用y=a(x﹣h)2+k,a>0时图象开口向上,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;a<0时图象开口向下,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,顶点坐标是(h,k),对称轴是x=h.7、D【解题分析】根据相似三角形的判定和性质,即可得到答案.【题目详解】解:∵,∴∽,∴;故选:D.【题目点拨】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.8、C【解题分析】试题分析:根据平行投影的特点和规律可知,(3),(4)是上午,(1),(2)是下午,根据影子的长度可知先后为(4)(3)(2)(1).故选C.考点:平行投影.9、D【分析】根据一元二次方程的定义,再将代入原式,即可得到答案.【题目详解】解:∵关于x的一元二次方程有一个根为,∴,,则a的值为:.故选D.【题目点拨】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.10、C【解题分析】用配方法将抛物线的一般式转化为顶点式,可确定顶点坐标.解答:解:∵y=x2+2x+1=(x+1)2,∴抛物线顶点坐标为(-1,0),故选C.二、填空题(每小题3分,共24分)11、1【分析】设AB=a,根据平行四边形的性质分别求出弧长EF与弧长BE,即可求出的值.【题目详解】设AB=a,∵∴AD=1.5a,则DE=0.5a,∵平行四边形中,,∴∠D=120°,∴l1弧长EF==l2弧长BE==∴==1故答案为:1.【题目点拨】此题主要考查弧长公式,解题的关键是熟知弧长公式及平行四边形的性质.12、﹣4【解题分析】与x轴的交点的家横坐标就是求y=0时根,再根据求根公式或根与系数的关系,求出两根之和与两根之积。把要求的式子通分代入即可。【题目详解】设y=0,则,∴一元二次方程的解分别是点A和点B的横坐标,即,,∴,∴,故答案为:.【题目点拨】根据求根公式可得,若,是方程的两个实数根,则13、【解题分析】分析:根据勾股定理求出,根据∥,得到,即可求出的长.详解:∵四边形是矩形,∴,∥,,在中,,∴,∵是中点,∴,∵∥,∴,∴.故答案为.点睛:考查矩形的性质,勾股定理,相似三角形的性质及判定,熟练掌握相似三角形的判定方法和性质是解题的关键.14、1【解题分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,则AB=AD=1.【题目详解】如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即该船航行的距离(即AB的长)为1.故答案为1.【题目点拨】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.15、①④【分析】先确定顶点及对称轴,结合抛物线的开口方向逐一判断.【题目详解】因为y=2(x﹣3)2+1是抛物线的顶点式,顶点坐标为(3,1),①对称轴为x=3,当x>3时,y随x的增大而增大,故①正确;②,故②错误;③顶点坐标为(3,1),故③错误;④∵a=1>0,∴开口向上,故④正确.故答案为:①④.【题目点拨】本题考查了二次函数的性质以及函数的单调性和求抛物线的顶点坐标、对称轴及最值的方法.熟练掌握二次函数的性质是解题的关键.16、1.【分析】求出方程的解,再看看是否符合三角形三边关系定理即可解答.【题目详解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,则x﹣2=0或x﹣7=0,解得x=2或x=7,当x=2时,三角形的周长为2+3+4=1;当x=7时,3+4=7,不能构成三角形;故答案为:1.【题目点拨】本题考查解一元二次方程和三角形三边关系定理的应用,解题的关键是确定三角形的第三边.17、;【分析】如图(见解析),连接CO、DO,并延长DO交CF于H,由垂径定理可知CE,在中,可以求出半径CO的长;又由=和垂径定理得,根据圆周角定理可得,从而可知,在中可求出FG,也就可求得CF的长度;在中利用勾股定理求出DH,再求出,同样地,在中利用余弦函数求出OG,从而可求得.【题目详解】,,,(垂径定理)连接,设,则在中,解得,连接DO并延长交CF于H=,由垂径定理可知,是所对圆周角,是所对圆心角,且=2,,由勾股定理得:,.【题目点拨】本题考查了垂径定理、圆周角定理、直角三角形中的余弦三角函数,通过构造辅助线,利用垂径定理和圆周角定理是解题关键.18、1.【分析】根据平均数的定义解决问题即可.【题目详解】平均成绩=(4×80+6×90)=1(分),故答案为1.【题目点拨】本题考查平均数的定义,解题的关键是掌握平均数的定义.三、解答题(共66分)19、(1)见解析;(2)1【分析】(1)连接OB,由BD=CD,利用等边对等角得到∠DCB=∠DBC,再由AO垂直于OD,得到三角形AOC为直角三角形,得到两锐角互余,等量代换得到OB垂直于BD,即可得证;(2)设BD=x,则OD=x+1,在RT△OBD中,根据勾股定理得出32+x2=(x+1)2,通过解方程即可求得.【题目详解】解:(1)证明:连接OB,∵OA=OB,DC=DB,∴∠A=∠ABO,∠DCB=∠DBC,∵AO⊥OD,∴∠AOC=90°,即∠A+∠ACO=90°,∵∠ACO=∠DCB=∠DBC,∴∠ABO+∠DBC=90°,即OB⊥BD,则BD为圆O的切线;(2)解:设BD=x,则OD=x+1,而OB=OA=3,在RT△OBD中,OB2+BD2=OD2,即32+x2=(x+1)2,解得x=1,∴线段BD的长是1.20、(1);(2)【分析】(1)根据概率公式求解可得;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:所有可能出现的情况有6种,其中乙丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.【题目点拨】考核知识点:求概率.运用列举法求概率是关键.21、(1)详见解析;(2)详见解析【分析】(1)根据题意得出,,根据AAS即可证明;(2)由(1)可得到,再根据菱形的性质得出,即可证明平行四边形OCFD是矩形.【题目详解】证明:(1),,.E是CD中点,,又(AAS)(2),,.,四边形OCFD是平行四边形,平行四边形ABCD是菱形,.平行四边形OCFD是矩形.【题目点拨】此题考查矩形的判定和全等三角形的判定与性质,平行四边形的性质,解题关键在于利用全等三角形的性质进行解答.22、1【分析】根据直线与双曲线有交点可得,变形为,根据一元二次方程根与系数的关系,得出,再化简为,再将的值代入即可得出答案.【题目详解】解:由题意得:,∴,∴∴=故答案为:1.【题目点拨】本题考查了一次函数与反比例函数的综合,根据一元二次方程的根与系数的关系得出的值是解题的关键.23、(1)90°;(2)1.【分析】(1)根据题意∠ACE即为旋转角,只需求出∠ACE的度数即可.
(2)根据勾股定理可求出BC,由旋转的性质可知CE=CA=8,从而可求出BE的长度.【题目详解】解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴BC==6,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=124、(1);(2)见解析;(3)交点为和【分析】(1)根据待定系数法即可求出直线的解析式;(2)描点连线即可;(3)根据图象得出函数为二次函数,顶点坐标为(-2,2),用待定系数法即可求出抛物线的解析式,解方程组即可得出与交点坐标.【题目详解】(1)设直线的解析式为y=kx+m.由图象可知,直线过点(6,0),(0,-3),∴,解得:,∴;(2)图象如图:(3)由图象可知:函数为抛物线,顶点为.设其解析式为:从表中选一点代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版火锅店装修设计、施工、验收标准合同
- 2025年度海上风电运输保险合同协议书
- 二零二五年度节能减排市场调查与分析合同
- 2025年操作工技能考核考试-一次盐水精制考试历年参考题库含答案解析(5卷100道集合-单选题)
- 二零二五年度智能门窗系统安装工程合同
- 二零二五年度大学教师学术成果推广聘用合同
- 出版物资订行业深度研究分析报告(2024-2030版)
- 二零二五版工业自动化工厂租赁合同样本
- 2025版化工厂员工劳动权益保障与劳动保护措施合同
- 二零二五年度数据中心IDC业务智能化改造与升级合同
- 国际常用色卡对照表
- (无线)门禁系统报价单
- 极低和超低出生体重儿的问题及管理
- (完整版)小学二年级英语阅读理解
- 水利工程事故案例
- 便利店进货查验记录制度范本
- 氮气置换专项方案
- pp板检测报告参考资料
- 医院外包项目评估审核制度与程序
- 4M变更申请书模板
- 职业技能大赛:电子商务师(四级)理论知识鉴定要素细目表(征求意见稿)
评论
0/150
提交评论