湖南省郴州市资兴市兴华实验学校2024届数学九年级第一学期期末调研试题含解析_第1页
湖南省郴州市资兴市兴华实验学校2024届数学九年级第一学期期末调研试题含解析_第2页
湖南省郴州市资兴市兴华实验学校2024届数学九年级第一学期期末调研试题含解析_第3页
湖南省郴州市资兴市兴华实验学校2024届数学九年级第一学期期末调研试题含解析_第4页
湖南省郴州市资兴市兴华实验学校2024届数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省郴州市资兴市兴华实验学校2024届数学九年级第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在Rt△ABC中,,如果∠A=,,那么线段AC的长可表示为().A.; B.; C.; D..2.一个几何体的三视图如图所示,则这个几何体是()A.球体 B.圆锥 C.棱柱 D.圆柱3.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上4.的绝对值为()A. B. C. D.5.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.56.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±27.一元二次方程的根的情况是()A.有两个不相等实数根 B.有两个相等实数根 C.没有实数根 D.无法确定8.方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=09.如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是A.(2,3) B.(3,2) C.(1,3) D.(3,1)10.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC:AB=2:5,则S△ADC:S△BDC是()A.3:19 B. C.3: D.4:21二、填空题(每小题3分,共24分)11.如图,一次函数与的图象交于点,则关于的不等式的解集为______.12.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.13.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.14.如图,⊙O经过A,B,C三点,PA,PB分别与⊙O相切于A,B点,∠P=46°,则∠C=_____.15.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为_____.16.二次函数y=+2的顶点坐标为.17.若是关于的方程的一个根,则的值为_________________.18.已知某个正六边形的周长为,则这个正六边形的边心距是__________.三、解答题(共66分)19.(10分)如图,在中,,正方形的顶点分别在边、上,在边上.(1)点到的距离为_________.(2)求的长.20.(6分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.(1)求证:DE与⊙O相切;(2)若CD=BF,AE=3,求DF的长.21.(6分)超速行驶被称为“马路第一杀手”,为了让驾驶员自觉遵守交通规则,市公路检测中在一事故多发地段安装了一个测速仪器,如图所示,已知检测点A设在距离公路BC20米处,∠B=45°,∠C=30°,现测得一辆汽车从B处行驶到C处所用时间为2.7秒.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:1.7,≈1.4)22.(8分)己知函数(是常数)(1)当时,该函数图像与直线有几个公共点?请说明理由;(2)若函数图像与轴只有一公共点,求的值.23.(8分)(1)计算:;(2)解方程:.24.(8分)在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树形图如下:小华列出表格如下:第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?25.(10分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.(1)求点D的坐标:(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.26.(10分)在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据余弦函数是邻边比斜边,可得答案.【题目详解】解:由题意,得,,故选:.【题目点拨】本题考查了锐角三角函数的定义,利用余弦函数的定义是解题关键.2、D【解题分析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.3、B【分析】由题意直接根据事件发生的可能性大小进行判断即可.【题目详解】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.注意掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】根据绝对值的定义即可求解.【题目详解】的绝对值为故选C.【题目点拨】此题主要考查绝对值,解题的关键是熟知其定义.5、D【题目详解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选D.6、D【分析】根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.【题目详解】因为点M(a,2a)在反比例函数y=的图象上,可得:,,解得:,故选D.【题目点拨】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.7、A【分析】根据方程的系数结合根的判别式即可得出△=49>0,由此即可得出方程有两个不相等的实数根.【题目详解】解:∵在方程中,△=,∴方程有两个不相等的实数根.故选:A.【题目点拨】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的实数根”是解题的关键.8、C【解题分析】试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1.故选C.考点:解一元二次方程-因式分解法.9、D【解题分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解答:解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.10、D【分析】根据已知条件易证△ADC∽△ABC,再利用相似三角形的性质解答即可.【题目详解】∵在△ABC中,∠ACB=90°,CD⊥AB于点D,∴∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ABC,∴AC:AB=2:5,是相似比,∴S△ADC:S△ABC=4:25,∴S△ADC:S△BDC=4:(25﹣4)=4:21,故选D.【题目点拨】本题考查了相似三角形的判定和性质,证明△ADC∽△ABC是解决问题的关键.二、填空题(每小题3分,共24分)11、【分析】先把代入求出n的值,然后根据图像解答即可.【题目详解】把代入,得-n-2=-4,∴n=2,∴当x<2时,.故答案为:x<2.【题目点拨】本题主要考查一次函数图像上点的坐标特征,以及一次函数和一元一次不等式的关系、数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.12、x=4【解题分析】根据函数值相等的点到抛物线对称轴的距离相等,可由点A(1,-4)和点B(6,-4)都在抛物线y=ax²+bx+c的图象上,得到其对称轴为x==1.故答案为x=4.13、3【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【题目详解】解:设运动时间为t秒,如图,则CP=12-3t,BQ=t,四边形PQBC为平行四边形12-3t=t,解得:t=3,故答案为【题目点拨】本题考查了平行四边形的判定及动点问题,解题的关键是化动为静,分别表示出CP和BQ的长,难度不大.14、67°【分析】根据切线的性质定理可得到∠OAP=∠OBP=90°,再根据四边形的内角和求出∠AOB,然后根据圆周角定理解答.【题目详解】解:∵PA,PB分别与⊙O相切于A,B两点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案为:67°.【题目点拨】本题考查了圆的切线的性质、四边形的内角和和圆周角定理,属于常见题型,熟练掌握上述知识是解题关键.15、-1.【解题分析】分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.

详解:把x=0代入方程得:

|a|-1=0,

∴a=±1,

∵a-1≠0,

∴a=-1.

故选A.

点睛:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项.16、(1,2).【解题分析】试题分析:由二次函数的解析式可求得答案.∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2).故答案为(1,2).考点:二次函数的性质.17、【分析】将x=2代入方程,列出含字母a的方程,求a值即可.【题目详解】解:∵x=2是方程的一个根,∴,解得,a=.故答案为:.【题目点拨】本题考查方程解的定义,理解定义,方程的解是使等式成立的未知数的值是解答此题的关键.18、【分析】首先得出正六边形的边长,构建直角三角形,利用直角三角形的边角关系即可求出.【题目详解】解:如图作正六边形外接圆,连接OA,作OM⊥AB垂足为M,得到∠AOM=30°∵圆内接正六边形ABCDEF的周长为6∴AB=1则AM=,OA=1因而OM=OA·=正六边形的边心距是【题目点拨】此题主要考查了正多边形和圆,正确掌握正多边形的性质是解题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)根据勾股定理即可得出BC=8,再运用等面积法,即可得出答案.(2)根据正方形的性质,即可得出,再根据相似三角形的判定可得出,进而得出,设x得出方程进行求解即可.【题目详解】解:(1)∵∴BC=8∴==24∴∴点C到AB的距离是.(2)如图,过点作于点,交于点,∵四边形是正方形,∴,∴,∴,∴.设,则,解得∴的长为.【题目点拨】本题主要考察了勾股定理和相似三角形,正确找出三角形的线段关系和灵活运用等面积法是解题的关键.20、(1)见解析;(2)DF=2.【分析】(1)连接OD,求出AC∥OD,求出OD⊥DE,根据切线的判定得出即可;

(2)求出∠1=∠2=∠F=30°,求出AD=DF,解直角三角形求出AD,即可求出答案.【题目详解】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,又∵AB=AC,∴∠1=∠2,∵OA=OD,∴∠2=∠ADO,∴∠1=∠ADO,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∴OD⊥ED,∵OD过O,∴DE与⊙O相切;(2)解:∵AB=AC,AD⊥BC,∴∠1=∠2,CD=BD,∵CD=BF,∴BF=BD,∴∠3=∠F,∴∠4=∠3+∠F=2∠3,∵OB=OD,∴∠ODB=∠4=2∠3,∵∠ODF=90°,∴∠3=∠F=30°,∠4=∠ODB=60°,∵∠ADB=90°,∴∠2=∠1=30°,∴∠2=∠F,∴DF=AD,∵∠1=30°,∠AED=90°,∴AD=2ED,∵AE2+DE2=AD2,AE=3,∴AD=2,∴DF=2.【题目点拨】本题考查了等腰三角形的性质,三角形的外角性质,圆周角定理,切线的判定定理,解直角三角形等知识点,能综合运用定理进行推理是解此题的关键.21、(1)(20+20)m;(2)这辆汽车没超速,见解析【分析】(1)如图作AD⊥BC于D.则AD=20m,求出CD、BD即可解决问题;(2)求出汽车的速度和此地限速为80km/h比较大小,即可解决问题,注意统一单位.【题目详解】(1)如图作AD⊥BC于D.则AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°,∴CDAD=20m,∴BC=BD+DC=(20+20)m.(2)结论:这辆汽车没超速.理由如下:∵BC=BD+DC=(20+20)BC≈54m,∴汽车速度20m/s=72km/h.∵72km/h<80km/h,∴这辆汽车没超速.【题目点拨】本题考查了解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解答本题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22、(1)函数图像与直线有两个不同的公共点;(2)或.【分析】(1)首先联立二次函数和一次函数得出一元二次方程,然后由根的判别式判定即可;(2)分情况讨论:当和时,与轴有一个公共点求解即可.【题目详解】(1)当时,∴∴∵∴方程有两个不相等的实数根,函数图像与直线有两个不同的公共点(2)①当时,函数与轴有一个公共点②当时,函数是二次函数由题可得,综上可知:或.【题目点拨】此题主要考查二次函数与一次函数的综合运用,熟练掌握,即可解题.23、(1);(2),【分析】(1)利用特殊角的三角函数值计算即可;(2)利用因式分解法解一元二次方程即可.【题目详解】(1)原式=(2)原方程可变形为或【题目点拨】本题主要考查特殊角的三角函数值及解一元二次方程,掌握特殊角的三角函数值及因式分解法是解题的关键.24、(1)放回(2)(3,2)(3)小明获胜的可能性大.理由见解析【分析】(1)根据树形图法的作法可知.(2)根据排列顺序可知.(3)游戏公平与否,比较概率即知.【题目详解】解:(1)放回.(2)(3,2).(3)理由如下:∵根据小明的游戏规则,共有12种等可能结果,数字之和为奇数的有8种,∴概率为:.∵根据小华的游戏规则,共有16种等可能结果,数字之和为奇数的有8种,∴概率为:.∵,∴小明获胜的可能性大.25、(1)(4,3);(2)y=x+x;(3)【分析】(1)根据矩形的性质可知点D的纵坐标为3,代入直线解析式即可求出点D的横坐标,从而可确定点D的坐标;(2)直接将点A、D的坐标代入抛物线解析式即可;(3)当P为抛物线顶点时,△POA面积最大,将抛物线解析式化为顶点式,求出点P的坐标,再计算面积即可.【题目详解】解:(1)设D的横坐标为x,则根据题意有3=x,则x=4∴D点坐标为(4,3)(2)将A(6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论