四川省眉山外国语学校2024届数学九上期末复习检测模拟试题含解析_第1页
四川省眉山外国语学校2024届数学九上期末复习检测模拟试题含解析_第2页
四川省眉山外国语学校2024届数学九上期末复习检测模拟试题含解析_第3页
四川省眉山外国语学校2024届数学九上期末复习检测模拟试题含解析_第4页
四川省眉山外国语学校2024届数学九上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省眉山外国语学校2024届数学九上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.一元二次方程的解的情况是()A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解2.如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程()A. B.C. D.3.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则A.5 B.7 C.9 D.114.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4 B.﹣4 C.3﹣4 D.6﹣35.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A. B. C. D.6.如图,在平行四边形中,点是上任意一点,过点作交于点,连接并延长交的延长线于点,则下列结论中错误的是()A. B. C. D.7.一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为()A.8 B.10 C.20 D.408.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇9.如图,已知ΔABC中,AE交BC于点D,∠C=∠E,AD:DE=2:3,AE=10,BD=5,则DC的长是()A. B. C. D.10.方程的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-111.若关于的方程是一元二次方程,则的取值范围是()A. B. C. D.12.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.6二、填空题(每题4分,共24分)13.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.14.二次函数y=图像的顶点坐标是__________.15.计算:____________16.如果,那么=_____.17.正八边形的每个外角的度数和是_____.18.投掷一枚材质均匀的正方体骰子,向上的一面出现的点数是2的倍数的概率等于_________.三、解答题(共78分)19.(8分)如图,在△ABC中,CD⊥AB,垂足为点D.若AB=12,CD=6,tanA=,求sinB+cosB的值.20.(8分)如图,一块等腰三角形钢板的底边长为,腰长为.(1)求能从这块钢板上截得的最大圆的半径;(2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少?21.(8分)如图,△OAB中,OA=OB=10cm,∠AOB=80°,以点O为圆心,半径为6cm的优弧分别交OA、OB于点M、N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与圆弧相切,求AT的长.(3)Q为优弧上一点,当△AOQ面积最大时,请直接写出∠BOQ的度数为.22.(10分)已知:AB为⊙O的直径.(1)作OB的垂直平分线CD,交⊙O于C、D两点;(2)在(1)的条件下,连接AC、AD,则△ACD为三角形.23.(10分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.小丽;如果以每千克10元的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以每千克13元的价格销售,那么每天可获取利润750元.(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?24.(10分)如图①,在中,,是边上任意一点(点与点,不重合),以为一直角边作,,连接,.若和是等腰直角三角形.(1)猜想线段,之间的数量关系及所在直线的位置关系,直接写出结论;(2)现将图①中的绕着点顺时针旋转,得到图②,请判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.25.(12分)某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.26.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求CD的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】求出判别式的值即可得到答案.【题目详解】∵2-4ac=9-(-4)=13,∴方程有两个不相等的实数根,故选:B.【题目点拨】此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.2、B【分析】设,则,根据矩形面积公式列出方程.【题目详解】解:设,则,由题意,得.故选.【题目点拨】考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、A【题目详解】试题分析:已知⊙O的半径为13,弦AB的长度是24,,垂足为N,由垂径定理可得AN=BN=12,再由勾股定理可得ON=5,故答案选A.考点:垂径定理;勾股定理.4、A【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【题目详解】如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选:A.【题目点拨】考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,解题关键是直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值.5、D【解题分析】如图,∠ABC所在的直角三角形的对边AD=3,邻边BD=4,所以,tan∠ABC=.故选D.6、C【分析】根据平行四边形的性质可得出AD=EF=BC、AE=DF、BE=CF,然后根据相似三角形的对应边成比例一一判断即可.【题目详解】∵四边形ABCD为平行四边形,EF∥BC,∴AD=EF=BC,AE=DF,BE=CF.A.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论A正确;B.∵AD∥CK,∴△ADF∽△KCF,∴,∴,故结论B正确;C.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论C错误;D.∵ABCD是平行四边形,∴∠B=∠D.∵AD∥BK,∴∠DAF=∠K,∴△ADF∽△KBA,∴,即,故结论D正确.故选:C.【题目点拨】本题考查了相似三角形的判定与性以及平行四边形的性质,根据相似三角形的性质逐一分析四个结论的正误是解题的关键.7、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【题目详解】由题意可得,=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.【题目点拨】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8、D【分析】根据事件发生的可能性大小判断.【题目详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】根据∠C=∠E以及∠BDE=∠ADC,可以得到△BDE∽△ADC,由AD:DE=2:3,AE=10,可以求出AD和DE的值,再利用对应边成比例,即可求出DC的长.【题目详解】解:∵∠C=∠E,∠BDE=∠ADC∴△BDE∽△ADC∵AD:DE=2:3,AE=10∴AD=4,DE=6∴∴,解得:DC=故选B.【题目点拨】本题主要考查了相似三角形的判定和性质,熟练找出相似三角形以及列出对应边成比例的式子是解决本题的关键.10、C【分析】根据因式分解法,可得答案.【题目详解】解:,方程整理,得,x2-x=0

因式分解得,x(x-1)=0,

于是,得,x=0或x-1=0,

解得x1=0,x2=1,

故选:C.【题目点拨】本题考查了解一元二次方程,因式分解法是解题关键.11、A【解题分析】要使方程为一元二次方程,则二次项系数不能为0,所以令二次项系数不为0即可.【题目详解】解:由题知:m+1≠0,则m≠-1,故选:A.【题目点拨】本题主要考查的是一元二次方程的性质,二次项系数不为0,掌握这个知识点是解题的关键.12、C【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【题目详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【题目点拨】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.二、填空题(每题4分,共24分)13、80π【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【题目详解】解:圆锥的底面半径是:=8,圆锥的底面周长是:2×8π=16π,

则×16π×10=80π.故答案为:80π.【题目点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、(-5,-3)【分析】根据顶点式,其顶点坐标是,对照即可解答.【题目详解】解:二次函数是顶点式,顶点坐标为.故答案为:.【题目点拨】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.15、1【分析】根据分式混合运算的法则计算即可.【题目详解】解:原式====1,故答案为:1.【题目点拨】本题考查了分式混合运算,主要考查学生的计算能力,掌握分式混合运算的法则是解题的关键.16、【解题分析】试题解析:设a=2t,b=3t,故答案为:17、360°.【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案.【题目详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.【题目点拨】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.18、【解题分析】分析:利用概率公式:一般地,如果在一次试验中,有n种可能得结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=,即要求解.详解:∵骰子的六个面上分别刻有1到6的点数,点数为2的倍数的有3个,分别为2、4、6;∴掷得朝上一面的点数为2的倍数的概率为:.故答案为:.点睛:本题考查了概率公式的知识,解题的关键是利用概率=所求情况数与总数之比进行求解.三、解答题(共78分)19、.【分析】试题分析:先在Rt△ACD中,由正切函数的定义得tanA=,求出AD=4,则BD=AB﹣AD=1,再解Rt△BCD,由勾股定理得BC==10,sinB=,cosB=,由此求出sinB+cosB=.【题目详解】解:在Rt△ACD中,∵∠ADC=90°,∴tanA=,∴AD=4,∴BD=AB﹣AD=12﹣4=1.在Rt△BCD中,∵∠BDC=90°,BD=1,CD=6,∴BC==10,∴sinB=,cosB=,∴sinB+cosB==.故答案为考点:解直角三角形;勾股定理.20、(1)cm;(2)40cm.【分析】(1)由于三角形ABC是等腰三角形,过A作AD⊥BC于D,那么根据勾股定理得到AD=30,又从这块钢板上截得的最大圆就是三角形的内切圆,根据内切圆的圆心的性质知道其圆心在AD上,分别连接AO、BO、CO,然后利用三角形的面积公式即可求解;(2)由于一个圆完整覆盖这块钢板,那么这个圆是三个三角形的外接圆,设覆盖圆的半径为R,根据垂径定理和勾股定理即可求解【题目详解】解:(1)如图,过A作AD⊥BC于D∵AB=AC=50,BC=80∴根据等腰三角形三线合一的性质及勾股定理可得AD=30,BD=CD=40,设最大圆半径为r,则S△ABC=S△ABO+S△BOC+S△AOC,∴S△ABC=×BC×AD=(AB+BC+CA)r×80×30=(50+80+50)r解得:r=cm;(2)设覆盖圆的半径为R,圆心为O′,∵△ABC是等腰三角形,过A作AD⊥BC于D,∴BD=CD=40,AD=,∴O′在AD直线上,连接O′C,在Rt△O′DC中,由R2=402+(R-30)2,∴R=;若以BD长为半径为40cm,也可以覆盖,∴最小为40cm.【题目点拨】此题分别考查了三角形的外接圆与外心、内切圆与内心、等腰三角形的性质,综合性比较强,解题的关键是熟练掌握外心与内心的性质与等腰三角形的特殊性.21、(1)证明见解析;(2)AT=8;(3)170°或者10°.【分析】(1)欲证明AP=BP′,只要证明△AOP≌△BOP′即可;

(2)在Rt△ATO中,利用勾股定理计算即可;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.【题目详解】解:(1)证明:∵∠AOB=∠POP′=80°∴∠AOB+∠BOP=∠POP′+∠BOP即∠AOP=∠BOP′在△AOP与△BOP′中,∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)∵AT与弧相切,连结OT,∴OT⊥AT在Rt△AOT中,根据勾股定理,AT=∵OA=10,OT=6,∴AT=8;(3)解:如图,当OQ⊥OA时,△AOQ的面积最大;

理由是:当Q点在优弧MN左侧上,∵OQ⊥OA,

∴QO是△AOQ中最长的高,则△AOQ的面积最大,

∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,

当Q点在优弧MN右侧上,

∵OQ⊥OA,

∴QO是△AOQ中最长的高,则△AOQ的面积最大,

∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,

综上所述:当∠BOQ的度数为10°或170°时,△AOQ的面积最大.【题目点拨】本题考查切线的性质、等腰三角形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是正确寻找全等三角形,根据数形结合进行分类讨论.22、(1)见解析;(2)等边.【分析】(1)利用基本作图,作CD垂直平分OB;

(2)根据垂直平分线的性质得到OC=CB,DO=DB,则可证明△OCB、△OBD都是等边三角形,所以∠ABC=∠ABD=60°,利用圆周角定理得到∠ADC=∠ACD=60°,则可判断△ACD为等边三角形.【题目详解】解:(1)如图,CD为所作;(2)如图,连接OC、OD、BC、BD,∵CD垂直平分OB,∴OC=CB,DO=DB,∴OC=BC=OB=BD,∴△OCB、△OBD都是等边三角形,∴∠ABC=∠ABD=60°,∴∠ADC=∠ACD=60°,∴△ACD为等边三角形.故答案是:等边.【题目点拨】本题考查了基本作图及圆周角定理:证明△OCB、△OBD是等边三角形是解本题的关键.23、(1)y=﹣50x+800(x>0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.【解题分析】本题是通过构建函数模型解答销售利润的问题.依据题意首先确定学生对话中一次函数关系;然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w(元)与销售价x之间的函数关系,再依据函数的增减性求得最大利润.【题目详解】(1)当销售单价为13元/千克时,销售量为:750÷(13﹣8)=150千克,设:y与x的函数关系式为:y=kx+b(k≠0)把(10,300),(13,150)分别代入得:k=﹣50,b=800∴y与x的函数关系式为:y=﹣50x+800(x>0).(2)∵利润=销售量×(销售单价﹣进价),由题意得∴W=(﹣50x+800)(x﹣8)=﹣50(x﹣12)2+800,∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.(3)将w=600代入二次函数W=(﹣50x+800)(x﹣8)=600解得:x1=10,x2=14即:当销售利润为600元时,销售单价为每千克10元或14元.【题目点拨】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.24、(1)BE=AD,BE⊥AD;(2)BE=AD,BE⊥AD仍然成立,理由见解析【分析】(1)由CA=CB,CE=CD,∠ACB=90°易证△BCE≌△ACD,所以BE=AD,∠BEC=∠ADC,又因为∠EBC+∠BEC=90°,所以∠EBC+∠ADC=90°,即BE⊥AD;

(2)成立.设BE与AC的交点为点F,BE与AD的交点为点G,易证△ACD≌△BCE.得到AD=BE,∠CAD=∠CBE.再根据等量代换得到∠AFG+∠CAD=90°.即BE⊥AD.【题目详解】(1)BE=AD,BE⊥AD;在△BCE和△ACD中,∵,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论