厦门大学经济博弈论讲义2_第1页
厦门大学经济博弈论讲义2_第2页
厦门大学经济博弈论讲义2_第3页
厦门大学经济博弈论讲义2_第4页
厦门大学经济博弈论讲义2_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章完全信息静态博弈

本章介绍完全信息静态博弈。完全信息静态博弈即各博弈方同时决策,且所有博弈方对各方得益都了解的博弈。囚徒的困境、齐威王田忌赛马、猜硬币、石头剪子布、古诺产量决策都属于这种博弈。完全信息静态博弈属于非合作博弈最基本的类型。本章介绍完全信息静态博弈的一般分析方法、纳什均衡概念、各种经典模型及其应用等。本章分六节2.1基本分析思路和方法2.2纳什均衡2.3无限策略博弈分析和反应函数2.4混合策略和混合策略纳什均衡2.5纳什均衡的存在性2.6纳什均衡的选择和分析方法扩展2.1基本分析思路和方法2.1.1上策均衡2.1.2严格下策反复消去法2.1.3划线法2.1.4箭头法2.1.1上策均衡上策:不管其它博弈方选择什么策略,一博弈方的某个策略给他带来的得益始终高于其它的策略,至少不低于其他策略的策略囚徒的困境中的“坦白”;双寡头削价中“低价”。上策均衡:一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果上策均衡不是普遍存在的

2.1.2严格下策反复消去法严格下策:不管其它博弈方的策略如何变化,给一个博弈方带来的收益总是比另一种策略给他带来的收益小的策略严格下策反复消去:1,01,30,10,40,22,0左中右上下1,01,30,40,2左中1,01,3左中2.1.3划线法1,01,30,10,40,22,0-5,-50,-8-8,0-1,-1囚徒困境-1,11,-11,-1-1,1猜硬币2,10,00,01,3夫妻之争2.1.4箭头法1,01,30,10,40,22,0-5,-50,-8-8,0-1,-1囚徒困境-1,11,-11,-1-1,1猜硬币2,10,00,01,3夫妻之争2.2纳什均衡2.2.1纳什均衡的定义2.2.2纳什均衡的一致预测性质2.2.3纳什均衡与严格下策反复消去法2.2.1纳什均衡的定义策略空间:博弈方的第个策略:博弈方的得益:博弈:纳什均衡:在博弈中,如果由各个博弈方的各一个策略组成的某个策略组合中,任一博弈方的策略,都是对其余博弈方策略的组合的最佳对策,也即对任意都成立,则称为的一个纳什均衡2.2.2纳什均衡的一致预测性质

一致预测:如果所有博弈方都预测一个特定博弈结果会出现,所有博弈方都不会利用该预测或者这种预测能力选择与预测结果不一致的策略,即没有哪个博弈方有偏离这个预测结果的愿望,因此预测结果会成为博弈的最终结果只有纳什均衡才具有一致预测的性质一致预测性是纳什均衡的本质属性一致预测并不意味着一定能准确预测,因为有多重均衡,预测不一致的可能2.2.3纳什均衡与严格下策反复消去法上策均衡肯定是纳什均衡,但纳什均衡不一定是上策均衡命题2.1:在n个博弈方的博弈中,如果严格下策反复消去法排除了除之外的所有策略组合,那么一定是该博弈的唯一的纳什均衡命题2.2:在n个博弈方的博弈中中,如果是的一个纳什均衡,那么严格下策反复消去法一定不会将它消去

上述两个命题保证在进行纳什均衡分析之前先通过严格下策反复消去法简化博弈是可行的2.3无限策略分析和反应函数2.3.1古诺的寡头模型2.3.2反应函数2.3.3伯特兰德寡头模型2.3.4公共资源问题2.3.5反应函数的问题和局限性2.3.1古诺的寡头模型寡头产量竞争——以两厂商产量竞争为例222126qqqq--=4.5,4.55,3.753.75,54,4不突破突破厂商2不突破突破厂商1以自身最大利益为目标:各生产2单位产量,各自得益为4以两厂商总体利益最大:各生产1.5单位产量,各自得益为4.5两寡头间的囚徒困境博弈2.3.2反应函数古诺模型的反应函数(3,0)(6,0)(0,3)(0,6)古诺模型的反应函数图示理性局限和古诺调整2.3.3伯特兰德寡头模型价格竞争寡头的博弈模型产品无差别,消费者对价格不十分敏感2.3.4公共资源问题公共草地养羊问题以三农户为例n=3,c=4合作:总体利益最大化竞争:个体利益最大化2.3.5反应函数的问题和局限性在许多博弈中,博弈方的策略是有限且非连续时,其得益函数不是连续可导函数,无法求得反应函数,从而不能通过解方程组的方法求得纳什均衡。即使得益函数可以求导,也可能各博弈方的得益函数比较复杂,因此各自的反应函数也比较复杂,并不总能保证各博弈方的反应函数有交点,特别不能保证有唯一的交点。2.4混合策略和混合策略纳什均衡2.4.1严格竞争博弈和混合策略的引进2.4.2多重均衡博弈和混合策略2.4.3混合策略和严格下策反复消去法2.4.4混合策略反应函数2.4.1严格竞争博弈和混合策略的引进一、猜硬币博弈-1,11,-11,-1-1,1正面反面猜硬币方盖硬币方正面反面(1)不存在前面定义的纳什均衡策略组合(2)关键是不能让对方猜到自己策略这类博弈很多,引出混合策略纳什均衡概念二、混合策略、混合策略博弈

和混合策略纳什均衡

混合策略:在博弈中,博弈方的策略空间为,则博弈方以概率分布随机在其个可选策略中选择的“策略”,称为一个“混合策略”,其中对都成立,且

混合策略扩展博弈:博弈方在混合策略的策略空间(概率分布空间)的选择看作一个博弈,就是原博弈的“混合策略扩展博弈)。混合策略纳什均衡:包含混合策略的策略组合,构成纳什均衡。三、一个例子该博弈无纯策略纳什均衡,可用混合策略纳什均衡分析博弈方1的混合策略博弈方2的混合策略2,35,23,11,5CDAB博弈方2博弈方1

策略得益博弈方1(0.8,0.2)2.6博弈方2(0.8,0.2)2.6四、齐威王田忌赛马3,-31,-11,-11,-1-1,11,-11,-13,-31,-11,-11,-1-1,11,-1-1,13,-31,-11,-11,-1-1,11,-11,-13,-31,-11,-11,-11,-11,-1-1,13,-31,-11,-11,-1-1,11,-11,-13,-3上中下上中下上中下上中下上中下上中下上中下上中下上中下上中下上中下上中下田忌齐威王得益矩阵五、小偷和守卫的博弈V,-D-P,00,S0,0睡不睡偷不偷守卫小偷加重对首位的处罚:短期中的效果是使守卫真正尽职在长期中并不能使守卫更尽职,但会降低盗窃发生的概略0-D-D’守卫得益((睡)SPt小偷偷的概率1V,-D-P,00,S0,0睡不睡偷不偷守卫小偷加重对小偷的处罚:短期内能抑制盗窃发生率长期并不能降低盗窃发生率,但会是的守卫更多的偷懒0-P-P’小偷得益(偷)VPg守卫睡的概略12.4.2多重均衡博弈和混合策略一、夫妻之争的混合策略纳什均衡2,10,00,01,3时装足球时装足球丈夫妻子夫妻之争妻子的混合策略丈夫的混合策略夫妻之争博弈的混合策略纳什均衡策略得益博弈方1(0.75,0.25)0.67博弈方2(1/3,2/3)0.75二、制式问题1,30,00,02,2ABAB厂商2厂商1制式问题

制式问题混合策略纳什均衡AB得益厂商1:0.40.60.664厂商2:0.670.331.296三、市场机会博弈-50,-50100,00,1000,0进不进进不进厂商2厂商1市场机会

进不进得益厂商1:2/31/30厂商2:2/31/302.4.3混合策略和严格下策反复消去法3,10,20,23,31,31,1LRUMD博弈方2博弈方1博弈

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论