版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WorkingPaper
PhasinginU.S.Charging
Infrastructure
AnAssessmentofZero-Emission
CommercialVehicleEnergy
NeedsandDeployment
Scenarios
MichaelJoseph
BillVanAmburg
MarkHill
BharadwajSathiamoorthy
August2023
CALSTART|PhasinginU.S.ChargingInfrastructurei
Acknowledgments
TheauthorswouldliketothankkeyCALSTARTstaff,includingChaseLeCroy,JessieLund,andJasnaTomić,fortheircriticalreviewofandadditionstothisreport.Anyerrorsaretheauthors’own.
Nopartofthisdocumentmaybereproducedortransmittedinanyformorbyanymeans—electronic,mechanical,photocopying,recording,orotherwise—withoutpriorwrittenpermissionbyCALSTART.RequestsforpermissionorfurtherinformationshouldbeaddressedtoCALSTART,48S.ChesterAve,Pasadena,CA91106orPublications@CALSTART.org.
CALSTART
www.CALSTART.org
@CALSTART
©Copyright2023CALSTART
CALSTART|PhasinginU.S.ChargingInfrastructureii
TableofContents
Acknowledgments i
TableofContents ii
ListofAcronyms iii
FiguresandTables iv
ExecutiveSummary 1
I.InfrastructureBuildoutto2035 2
Introduction 2
EnergyNeedsoftheU.S.ZE-MHDVTransition 4
WhereInfrastructureDeploymentWillNeedtoMeetDemand 9
DeploymentPhasing 11
Takeaways 15
II.WhenBuildoutWillHappen:PrioritizingAreas 18
OvercomingBarrierstoAvailability 18
ExamplesintheRealWorld 19
ExamplesinAnalysis 23
Takeaways 25
III.HowBuildoutWillBeEfficient:SiteConfigurations 26
OvercomingBarrierstoUtilization 26
ExamplesintheRealWorld 27
ExamplesinAnalysis 30
Takeaways 31
IV.Conclusions 32
Discussion:NetworkEffectsandFurtherResearch 32
Recommendations 36
References 37
Appendix 41
DataSources 41
Approach 44
Assumptions 47
CALSTART|PhasinginU.S.ChargingInfrastructureiii
ListofAcronyms
Acronym
Definition
ACF
AdvancedCleanFleetsrule
ACT
AdvancedCleanTrucksrule
bhp-hr/mile
Brakehorsepower-hourpermile
CaaS
Charging-as-a-Service
CARB
CaliforniaAirResourcesBoard
CEC
CaliforniaEnergyCommission
CPUC
CaliforniaPublicUtilitiesCommission
EPA
U.S.EnvironmentalProtectionAgency
EVSE
Electricvehiclesupplyequipment
FHWA
FederalHighwayAdministration
GlobalMOU
GlobalMemorandumofUnderstandingonZero-EmissionMedium-andHeavy-DutyVehicles
HPMS
U.S.HighwayPerformanceManagementSystem
ICCT
InternationalCouncilonCleanTransportation
kW
Kilowatts
MHDV
Medium-andheavy-dutyvehicle
MWh
Megawatt-hours
NEVI
NationalElectricVehicleInfrastructureFormulaProgram
NHFN
NationalHighwayFreightNetwork
NREL
NationalRenewableEnergyLaboratory
PNNL
PacificNorthwestNationalLaboratory
SCAQMD
SouthCoastAirQualityManagementDistrict
VMT
Vehiclemilestraveled
ZE-MHDV
Zero-emissionmedium-andheavy-dutyvehicle
CALSTART|PhasinginU.S.ChargingInfrastructureiv
FiguresandTables
Figures
Figure1.DrivetoZeroSix-StageStrategy(CALSTART,2022b) 3
Figure2.AverageAnnualIncreaseinDailyEnergyConsumptionfromNewZE-MHDV
Sales,2023-2035 6
Figure3.EnergySystemOptimizationAreas 7
Figure4.IllustrationofSiteConfigurationsandFunctionsinPriorityLaunchAreas 11
Figure5.CALSTARTPhasedDeployment,Presentto2027–Phase1 12
Figure6.CALSTARTPhasedDeployment,2027to2030–Phase2 13
Figure7.CALSTARTPhasedDeployment,2030to2035–Phase3 14
Figure8.Rapid,ExtensiveMarketPenetrationSupportedbyPhasedBuildoutof
Infrastructure 16
Figure9.Phase-inPriorityAreasandContext 24
Figure10.InfrastructurePhase-InProgression 33
Tables
Table1.PriorityLaunchAreaDefinitions 10
Table2.Phase1Breakdown 12
Table3.Phase2Breakdown 13
Table4.Phase3Breakdown 14
Table5.PriorityFactors 19
Table6.Costs($billions) 35
TableA-1.TravelDataSources 41
TableA-2.PrioritizationData 42
TableA-3.CostData 43
TableA-4.PriorityData 46
TableA-5.PhaseDefinition 47
CALSTART|PhasinginU.S.ChargingInfrastructurev
TableA-6.DeploymentDistributions 48
TableA-7.CostsofPhasedScenariobyPhaseandArea($billions) 49
TableA-8.EVSEBaseCosts 50
CALSTART|PhasinginU.S.ChargingInfrastructure
1
ExecutiveSummary
Toassessthefeasibilityofzero-emissioninfrastructurebuildoutatanationwidescale,CALSTARTprojectedtheinfrastructurerequiredtosupplytheelectricityneededforzero-emissionmedium-andheavy-dutyvehicle(ZE-MHDV)adoptionratesin2027,2030,and2035.TheseratesmeetthetargetssetbytheGlobalMemorandumofUnderstandingonZero-EmissionMedium-andHeavy-DutyVehicles(GlobalMOU),signedbytheUnitedStatesin2022.
ThisanalysisshowsthattheinfrastructurenecessarytomeetenergyneedsofZE-MHDVscanbephasedinaroundfavorablelaunchareas.ThisphasedapproachcanmanagedistributiongridupgradetimelinesandmaximizeutilizationevenwiththeGlobalMOU’sattainablemarketpenetrationrates,whichexceedthoseproposedbyU.S.regulators.TheacceleratingpaceofZE-MHDVenergyneedscanbemanagedthroughmarket-driven,overlapping,andconcurrentgrowthofanintegratedtransportation-energysystem.
Todevelopthisanalysisandresultingroadmap,CALSTARTmodeledenergyneedsandshowedhowprioritizingfavorablelaunchareasandusinginnovativedeploymentstrategiescanaccommodatecapacityconstraintsduringbuildout.Favorableregionsincludewhere1)industryconcentrates,2)publicandprivatefundshavehighleverage,3)policyissupportive,4)energywillcostless,or5)distributedgridmodernizationwilloccur.Buildoutinthisscenarioconcentratesfirstaroundreturn-to-basedepotinfrastructureinkeyindustryclustersthatformrecharginghubs,theninkeycorridorsenablingregionalhub-to-huboperations,andfinallyinnationalnetworknodes.
Insum,thisphase-instrategyenables:
.Fasterdeploymentbyfocusingonprioritylaunchareas.MoreZE-MHDVscanbesupportedinlesstimethaninlinear,unphasedgrowthscenarios.
.Cost-effectiveimplementation.Costscanbeshiftedforwardandlessimportantareaslefttofuturedeployment,whiletotalenergydemandcanbesuppliedthroughtargetedupgradesandmanagementstrategies,sharingarrangements,publiccharging,andotheronsiteoptimizations—reducingper-vehicleinfrastructurecosts.
.Aclearvisionthathelpsutilities,government,andinvestorstargetactionstointegrate
gridmodernizationandZE-MHDVadoption,aswellasmaximizeco-benefits.
.Coordinationthatleveragespublicfundsandunleashesprivateinvestment.
CALSTART|PhasinginU.S.ChargingInfrastructure
3
developedascenarioinwhichtheseneedsemergebasedoncurrentvehicleactivitypatternsandZE-MHDVadoptiontrends.InkeepingwithCALSTART’soverallstrategytowardmarketaccelerationandtransformation,itwasassumedthatmostofthisinvestmentwillbethroughprivateentities,utilizinginnovativestrategiesmanyCALSTARTmembershavesharedinpublicdiscussiononthetopic(CALSTART,2022a;CALSTART,2022c).
ThisprojectionshowshowtheacceleratingpaceofZE-MHDVenergyneedscanbemanagedthroughmarket-driven,overlapping,andconcurrentgrowthofasupportiveZE-MHDVecosysteminaphasedtransition.Deploymentconcentratesfirstaroundreturn-to-basedepotinfrastructureandinregionalrecharginghubswithinkeygeographiessupportingthefullrangeofregionaloperations,theninkeycorridorsenablingregionalhub-to-huboperations,andfinallyinbuilt-outnetworksconnectingcorridorstoeachotherandtoothercriticalinfrastructurealongthelargersurfacetransportationnetwork.ThisassessmentwasstructuredtobuildonandfurtherdetailtheDrivetoZeroimplementationroadmap(CALSTART,2022b).The2040ZE-MHDVroadmap'scorestrategy(Figure1)breaksuptheactivityneededtoreachfullsalespenetrationintosixoverlappingstages,withsmartinfrastructurephasingasacritical,enablingcomponentoffiveofthestages.
Figure1.DrivetoZeroSix-StageStrategy(CALSTART,2022b)
CALSTART|PhasinginU.S.ChargingInfrastructure
4
WiththewhoandwhatoftheZE-MHDVtransition—whoisinvestinginitandthepathwaytheyareonto100percentZE-MHDVs—alreadyknown,thisstudyanalyzeswhereZE-MHDVsarelikelytoappear,whytheyappearinthoselocations,whentheywillneedinfrastructure,andhowthisphasedbuildoutprocesswillaccommodatethem.Thisfirstsectionpresentsthisprojection,detailingthescaleandpaceofthetransitionintermsofenergydeliveryneedsandthephasestomeetthoseneeds.
EnergyNeedsoftheU.S.ZE-MHDVTransition
ZE-MHDVAdoptionRates
TodeterminewhereZE-MHDVswillappear,thisanalysisusedprojectedcommercialvehicleZE-MHDVmarketsalesfromtheDrivetoZerozero-emissionvehiclemarketassessment(CALSTART,2021a).Thesalesestimationsarebasedonamultifactorforecast,whichincludestechnologyreadinessandviabilityforkeyMHDVdutycycles,totalcostofownership,andproductionscalabilityinputsfortheprimarycommercialvehiclecategories.
Theadoptionratesrepresentthe2040goaloftheGlobalMOU.GlobalMOUsignatorieshavepledgedtoreach100percentnewZE-MHDVsalesby2040and30percentnewZE-MHDVsalesby2030;theUnitedStatesbecameasignatoryin2022.TheGlobalMOU,co-ledbytheGovernmentofTheNetherlandsandDrivetoZero,alsoalignswiththeParisAgreementtoreachnet-zerobythemiddleofthe21stcenturyandtodrasticallycutemissionstokeeptheriseinmeanglobaltemperaturebelow2.0degreesCelsiusandlimitedasfaraspossibleto1.5degreesCelsius.Thisstandardisalignedwiththetargetsannouncedbymostmajorglobaloriginalequipmentmanufacturerswhohaveset2040asthedatebywhenallnewvehiclesaleswillbezero-emissionorfossil-free(CALSTART,2021a).
TheGlobalMOUadoptionratesassumethistransitionwilloccurthroughaphased“beachhead”strategywithrespecttomarketaccelerationandtechnologyadoption.Inthebeachheadstrategy,first-movertechnologyapplicationsliketransitbuses,cargovans,andschoolbusesdominatemarkets.Fromthere,supportiveservicesandasupplychaindevelopsbehindtheseearlyapplications(CALSTART,2022c).
TheZE-MHDVsalesratesassumedinthisanalysisconstituteashareofthetotalcommercialvehiclepopulation,whichissignificantlyhigherthanthoseproposedbycertainregulatorytargets.ThisincludestheU.S.EnvironmentalProtectionAgency’s(EPA’s)recentlyproposedPhase3rulingtargetsforMHDVs,aswellastheAdvancedCleanTrucks(ACT)ruleoftheCaliforniaAirResourcesBoard(CARB)—alreadyadoptedbyseveralstates—andtheAdvancedCleanFleets(ACF)rule.Theseratesalsoalignwithotherforward-lookingrates
CALSTART|PhasinginU.S.ChargingInfrastructure
5
ofadoptionusedininfrastructureassessmentssuchasthosefromtheInternationalCouncilonCleanTransportation(ICCT)(ICCT,2023).
WhereandHowEnergyNeedsWillArise
Usingtheserates,energyneedsandwheretheywillappearwereprojectedbyconsideringhownewZE-MHDVsales,andtheinfrastructuretosupportthem,wouldbedistributedacrosstheUnitedStates.Thepurposeofthisprojectionwastoshowthattheseneedsarisefromthetravelpatternsontheexistingtransportationnetworkusedbycommercialvehicles.Inotherwords,whileindividualfleettransitionswillcollectivelyadduptoatotalenergyneed,theywilldothiswithinatravelmarketwithspatiallydifferentiatedandregionalvariations.Todemonstratethis,newsalesweredistributedinrelationtovehiclemilestraveled(VMT)bycommercialvehicles(Classes3–8)onrelevantsegmentsoftheZE-MHDVroadnetwork,whichwasdefinedastheNationalHighwayFreightNetwork(NHFN)withinthelower48U.S.states.
2
UsingFederalHighwayAdministration(FHWA)HighwayPerformanceManagementSystemdata,commercialvehicleactivitywascalculatedonindividualroadsegmentsandthenaggregatedintouniform10-square-miletravelareas(i.e.,ananalyticgrid)acrossthenetwork.VMTfortravelonindividualroadsegmentswasthencalculatedwithintheseareas,whichwasusedasabasisfordeterminingnewZE-MHDVintroductionsbywayofascalingfactor.Theenergyusedbytravelthroughanareavis-à-visalltravelonNHFNwasrelatedtotheenergyofpotentiallyintroducedZE-MHDVsinthatareatothetotalZE-MHDVsforecastedbytheGlobalMOUscenario,giventheirenergyusage,typicalrange,andotherfactors.Theassumptionbehindthisapproach,oneofseveralpossiblecurrentlybeingexplored,wasthattheenergyusedtotravelthrougheachareaonNHFNwillbesuppliedinsimilarproportionsbyashareofnewlyintroducedZE-MHDVsinthefuture.
3
MoredetailedinformationonthemethodologyisavailableintheAppendix.
2NHFNwasusedgiveninter-regionalandinter-statecommercialvehicletravelutilizesmuchofthefreightnetwork.Otherstatesandterritorieswereexcludedatthistimetofocusonthedeploymentscenariosinvolvingthemajorityofthisnetwork.
3Thisanalysisassumesvehiclerangeandtravelpatternsareconstantthroughthedurationoftheprojection.ThereareindicatorsthatthesemayshiftandbecomemoreefficientwithvocationalspecializationamongZE-MHDVs.
CALSTART|PhasinginU.S.ChargingInfrastructure
6
TheintroductionofZE-MHDVsacrosstheroadnetworkthenpresentsaconsequentialchangeinenergydeliveryneededtosupportthesevehicles,bothinspaceandovertime(Figure2).
Figure2.AverageAnnualIncreaseinDailyEnergyConsumptionfromNewZE-MHDVSales,2023-2035
InterpretingtheseneedscorrectlyiscriticalforunderstandingtheenergytransitionandthefeasibilityofaccommodatingZE-MHDVs.First,thespatialvariationinenergyneedsisclearlysignificant.NeedsclusterinareaswithhighVMT,whichinclude1)majorcommercialvehiclecenters(includingcitiesbutalsoareasexperiencingmajorindustrylanduses,likewarehousing)and2)majorfreightcorridors,butalso3)areaswherecommercialvehicletravelingeneralisnationallyveryhigh.Onlyafteracknowledgingthisfactcanneedsrepresentatotalgrowthinenergydemand.Notably,thisanalysisshowsthatneedsfromnewdeploymentsareofamagnitudesimilartothatestablishedinotherstudies,whenadjustingforthemoreaggressiveZE-MHDVpenetrationratesoftheGlobalMOU(ICCT,2023).
Next,thereisthechangeintheamountofenergyneededovertime.Thisanalysisshowsthattotalelectrificationneedsnecessitateachangeintheoverallenergysystemtodeliverenoughenergyandmanageenoughvolumetosupporttheconsumptionofhundredsofthousandsofadditionalmegawatt-hours(MWh)perday.Figure2aboveexpressesthisin
CALSTART|PhasinginU.S.ChargingInfrastructure
7
termsofanannualrateofchangeinthedailyconsumptionofenergyalongthetransportationsystem.Insomeareas,theaverageannualincreaseindailyenergyconsumptionoverthetimelineofthisanalysisrangesfromincreasesofupto0.3MWhperdayto,atthehighend,5.5MWhperdayincertainareas.Insomeareas,energysystemswillneedmanagementstrategiesandupgradesyearafteryeartoaddressasignificantchange.
Finally,itisimportanttonotethatthischangeinenergyneedsultimatelyrepresentsachangeinanenergysystem.Followingbothindustryandresearchadvancesinthisarea,thisstudydoesnotapproachthenecessarychangeinenergyasasimpleneedforadditionalcapacity—atthesamerate,yearoveryear—ontheexistingsystem.Thisanalysisunderscoresthatconsumptionofenergybyvehiclesconstitutesasuiteofneeds,whichcanbemetinvariousways.AnoptimizedZE-MHDVenergysystemthatfindssolutionsinseveraloptimizationareaswillbecrucial(Figure3).
Figure3.EnergySystemOptimizationAreas
Solutionscanbefoundacrosseachoftheaxesabovetomeetthenewdemandincreases
acrossthetransportationnetwork.Broadchangesatscaleinthemarketitselfcanformasolution;so,too,canwidergridmodernizationefforts,includingbothtransmissionanddistributionsystemplanningandoperationimprovementstoincludeadvanceshort-termandlong-termgridupgradesandtheacceleratedsupportforintegrationofsmartenergy
CALSTART|PhasinginU.S.ChargingInfrastructure
8
managementtechnologies,platforms,andservicesinadvanceofrequestsfortheirdeployment(U.S.DepartmentofEnergy,2020).Optimizationcanalsooccurbydeployingtheseenergymanagementtechnologiesonornearsitesthroughitsconfiguration.Then,thevehicles(asloads)canbemanagedthroughsmarteroperations,andtheactualcomponentryandvehicletechnologycanchange.EachaxisinFigure3isaresourceforcomposingsolutionstonetdemandincreaseissues.
Recentstudiesonthedistributionsystemgenerallyconcurthattheseupgradescanbemadecosteffectivelyandforafractionofutilityinvestmentgenerally(E3,2021).Theyalsoshowthatinvestmentinoneareamayinfactenable,supplement,orsubstituteinvestmentsinothers.IncreasedabilitytomanageconsumptionofmoreMWhisneeded,butinvestmentsinstorage,forexample,mayultimatelyproveasolutioninsomecontexts.Ingeneral,thisassessmentwasframedinsuchawaytomakeroomformultipledevelopmentareasinordertocopewithenergydemandandspuroverallenergysystemmodernization.
Forthepurposesofanalysis,thescopeofsysteminvestmentswaslimitedtothedeploymentofelectricvehiclesupplyequipment(EVSE)necessarytosupportenergydemand,includingchargers,make-readyimprovements,andstoragesystems(i.e.,onsitestorage).Significantdistributionsystemupgrades,onsitegeneration,andmanyoftheenergysystemservicesandotherelementsinFigure3wereexcluded,butsitemanagementandevenoperationalconsiderationsweretakenintoaccountforthemanagementofZE-MHDVsasdistributedandvariableloads.SeetheAppendixformoredetailontheseassumptions.
CALSTART|PhasinginU.S.ChargingInfrastructure
9
WhereInfrastructureDeploymentWillNeedtoMeetDemand
Next,CALSTARTprojectedthedeploymentovertimenecessarytorespondtotheseneeds.
4
ThedetailofthemethodologyisdiscussedfurtherintheAppendix.
Theanalysisconsideredtwooptionsforprojections:
.First,themaximumnumberofdeploymentsandtheirpowerratingtosatisfyenergydemandcausedbytheintroductionofanewZE-MHDVinanarea.
.Next,anoptimumnumberofenergysupplyinfrastructuretomeetnewZE-MHDVintroductionovertime,whichconstitutesaphased-ininvestmentscenario.
Intheunoptimizedprojection,themostinfrastructurepossibletosupplytheneedsforeachnewvehicleintroducedwasdeployed.Furthermore,deploymentwasuniformandindifferenttowhereeachnewvehiclewouldbelocated,aswellastothetimingofinvestment.Redundanciesindeploymentwerenotconsideredinbothtimeandspace,anddeploymentdensifiedinallareasacrossthetravelnetworkataconstantandundifferentiatedrate.Thelocationandpaceofdeploymenthadthecharacterofan
adoptioncurve;itdidnotrepresentthegeographyofenergyneedscorrespondingtothatcurve.
Intheoptimizedprojection,factorswereemployedtolocalizetheareaswhereinvestmentcouldrespondtothemostimportantincreasesinenergyneedsovertheanalysistimeline(fromthepresentto2035),whileaccountingforthefullpaceandscaleoftheenergyneedsinvolvedacrossthenetwork.
Thefirstfactorincludedintheoptimizedscenariowasinfrastructureutilization.Optimalutilizationcanachievealowerlevelizedcostofinfrastructureperunitofelectricitydeliveredtovehicles(Phadkeetal.,2021;Borlaugetal.,2020).Theoptimizedprojectiondidnotassumebuildoutwasone-to-onewiththenumberofvehiclesintroducedandwasbasedonassumedratesofchargerutilizationthatcoulddeliverenergyneededforthetotalnumberofZE-MHDVsastheyareintroduced.
4Exactdeploymentlocationsandconfigurationswerenotprojectedontoparcelsoflandbutwereassumedtobewithintheanalysisgrid,i.e.,withinareasaccessiblebyNHFN.
CALSTART|PhasinginU.S.ChargingInfrastructure
10
Thenextfactorwasthegeneralimportanceorpriorityoftheareafordeployment.Byconcentratingdeploymentsinaparticulararea,deploymentcanaccommodatemoreoftheshareofthedistributionofdemand.Inordertoestablishpriorityareas,fourgeneraltypesofprioritieswereconsidered:
.Identifiedinvestmentpriority:AnareahasalreadybeenindicatedasapriorityforinvestmentbyindustryorbysupportivefederalmoneysuchasU.S.DepartmentofEnergyZEVCorridorPlanningPartnershipGrants.
.Political,social,andequitypriorities:AnareahasadoptedACT,orhassignedontoorsupportedtheGlobalMOU,andwillbenefitfrominvestmentintermsofairquality.
.Industryclustering:Thereisaconcentrationofsectoralactivity(i.e.,fleetlocationandgrowth)inMHDVtransportationservices,suchaswarehouses,logistics,orothersectors.
.Potentialforenergysystemimprovementsandenergycostreduction:TheoverallloweringoflevelizedcostofenergywithinregionsandthegrowthofdistributedenergyresourceshighlightpotentialareaswheregridimprovementsofthetypesneededforEVSEinstallationswillbeaprioritythrough2035.
Theoptimizedprojectionassumedinvestmentswillhappenacrossthenationalnetworkcontinuallythroughouttheanalysisperiodbutareconcentratedfirstinareasthatreceivehighrankingsacrossalloftheabovepriorities.Theseinvestmentpriorityfactorsandutilizationefficienciescombinetoprovideanoptimizedgeographyofinvestmentin“prioritylaunchareas,”whichmaximizeutilizationandinvestmentbenefits(Table1).
Table1.PriorityLaunchAreaDefinitions
PriorityLaunchArea
Profile
Ranking
Clusters
Concentratedareasof
industryactivity;where
investment,political,social,
equity,economic,and
energyinvestmentsalign
Top33percentofareas
withcompositescoreof
priorityfactors
Corridors
Connectorsoutsideofhubs
enablingpoint-to-point
operations
Nexthighest50percentofareaswithcompositescoreofpriorityfactors
NationalNetwork
Nodesthatprovide
ubiquitousavailability,
connectingcorridors
togetherorlinkingto
nationalfacilities
Nexthighest33percentofareaswithcompositescoreofpriorityfactors
CALSTART|PhasinginU.S.ChargingInfrastructure
11
Figure4illustratessitesandpotentialsiteconfigurationsthatwouldbedeployedwithineachlaunchareacorrespondingtothedescriptionsinTable1above;italsoshowsspecificdutycycleandvehicleoperationconsiderationsenabledbyinfrastructurebuildoutwithintheseareas.
Figure4.IllustrationofSiteConfigurationsandFunctionsinPriorityLaunchAreas
Inthisprojection,hubsarethehighestpriorityareas,thencorridors,andfinallyareasthatconstituteanationalnetwork,withhubsmakingup75percentofthetotaldeployment,corridors18percent,andnetworknodes7percent.Itwasassumedthatsomeinvestmentwillcontinuewithinmorethanoneareaacrosstheanalysistimeline.
DeploymentPhasing
TheresultingnationalroadmapisoneinwhichphasesofinfrastructureinvestmentanddeploymentaccommodatethescaleoftheZE-MHDVtransition.Belowisadescriptionoftheseresults,whichwillbediscussedinmoredetailthroughouttherestofthisworkingpaper.Phase1–MajorDeploymentinCompetitiveClustersorHubs
Thefirstphase(Figure5)seesinvestmentandmarket-coordinatedactivityinandnearMHDV-dependentindustryclusters,supportingregionalfreightnetworksthrough2027.Thisisestimatedtobenearly21percentofalldeploymentandwouldinclude:1)about17percentofprojectedinfrastructuredeployedwithinmajorfreightindustryclusters(composing24percentofallhubinfrastructure),and2)about3percentofprojectedinfrastructurebuiltoncorridorswithexpressindustrysupportorsupportfromfederalandstateincentivedollars(about19percentofallcorridorinfrastructure).Becauseinvestmentsarelocatedinareaswithhighpriorityforoveralllong-terminvestment,infrastructurewillhaveaclearrelationshipwithfutureutilizationandoveralladoption.
Figure5.CALSTARTPhasedDeployment,Presentto2027–Phase1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专项商品定向购买协议
- 2024年校园照明升级项目协议条款
- 放射性金属矿矿物学分析与鉴定方法考核试卷
- 2024高端酒店服务员劳动协议
- 《FlashToSIP协议转换器的设计与实现》
- 《2018-2019赛季NBA季后赛中锋进攻方式研究》
- 2024年精装修工程门窗采购协议
- 六年级数学下册 综合模拟试卷三(学生版)(北师大)
- 搪瓷制品的材质选择与工艺优化考核试卷
- 循环经济视角下的创新创业管理考核试卷
- 冀教版五年级上册数学基本功训练电子版
- F500-1000泥浆泵说明书
- 《上步投掷沙包(垒球)》教学课件
- 大学体育与健康知到章节答案智慧树2023年吉林师范大学
- 电气工程及其自动化职业生涯规划
- 《微电影制作教程》第二章
- 《阳光心理健康人生》心理健康主题班会PPT
- 初三家长会数学课件
- CSBMK-2022年中国软件行业基准数据
- GB/T 25071-2010珠宝玉石及贵金属产品分类与代码
- GB/T 15441-1995水质急性毒性的测定发光细菌法
评论
0/150
提交评论