2023-2024学年高中数学 湘教版选择性必修第二册 1-2-3简单符合函数的求导同步教案_第1页
2023-2024学年高中数学 湘教版选择性必修第二册 1-2-3简单符合函数的求导同步教案_第2页
2023-2024学年高中数学 湘教版选择性必修第二册 1-2-3简单符合函数的求导同步教案_第3页
2023-2024学年高中数学 湘教版选择性必修第二册 1-2-3简单符合函数的求导同步教案_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学1.2.3简单符合函数的求导同步教案高中数学1.2.3简单符合函数的求导同步教案教学目标:1.理解符合函数的概念和性质;2.掌握简单符合函数的求导法则;3.运用求导法则计算简单符合函数的导数。教学内容与步骤:第一节:引入1.引入符合函数的概念,解释它在实际问题中的意义和应用。2.提问并讨论:如何计算一个符合函数在某一点处的斜率?第二节:定义和性质1.定义符合函数,并给出相应的公式。2.解释符合函数在图像上所代表的意义。第三节:简单符合函数的求导法则1.讲解常见简单符合函数(如多项式、指数、对数等)的求导法则,并说明其推导过程。-多项式:对于多项式f(x)=ax^n,其导数为f'(x)=nax^(n-1)。-指数:对于指数函数f(x)=a^x,其导数为f'(x)=ln(a)*a^x。-对数:对于自然对数函数f(x)=ln(x),其导数为f'(x)=1/x。2.给出几个具体例子,如f(x)=x^2,g(x)=e^x,h(x)=ln(x)等,并计算它们在某一点处的导数。第四节:复合函数与链式法则1.引入复合函数概念,并讲解如何利用链式法则计算复合函数的导数。2.给出几个复合函数的例子,演示如何利用链式法则计算它们在某一点处的导数。第五节:练习与应用1.提供练习题目,包括基本以及复合函数等各种类型,让学生运用所学知识计算符合函数的导数。2.引导学生思考如何应用符合函数的求导法则解决实际问题,如增长率、利润最大化等相关问题。教学方法与手段:1.讲授与演示相结合:通过讲解概念、公式以及具体例子进行演示;2.实例引入:通过具体实例来引发学生对概念的兴趣和思考;3.互动讨论:鼓励学生积极参与课堂讨论,提出问题并展开思考;4.练习与应用:提供练习题目,在课堂上或课后进行巩固和扩展。教学资源:1.教科书或课本;2.投影仪或黑板;3.实例题目和练习题;4.相关实物或图片等辅助教具。教学评估:1.课堂小测验:通过解答相关问题和完成练习题来检验学生对知识掌握程度;2.学生自主提出问题并应用求导法则进行求解。教学安排:本节课预计需要2个课时来完成以上内容的讲授、示范与练习。教学延伸:对于学有余力的学生,可以引导他们深入研究更复杂的符合函数的求导问题,并探讨高阶导数的求解方法。同时,可以通过更

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论