




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市海淀区一零一中学九年级数学第一学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,菱形ABCD中,EF⊥AC,垂足为点H,分别交AD、AB及CB的延长线交于点E、M、F,且AE:FB=1:2,则AH:AC的值为()A. B. C. D.2.如图,当刻度尺的一边与⊙O相切时,另一边与⊙O的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为()A.cm B.4cm C.3cm D.2cm3.下列事件中,是必然事件的是()A.经过有交通信号灯的路口,遇到红灯 B.明天太阳从西方升起C.三角形内角和是 D.购买一张彩票,中奖4.反比例函数的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①② B.②③ C.③④ D.①④5.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个()A.45 B.48 C.50 D.556.已知点在线段上(点与点、不重合),过点、的圆记作为圆,过点、的圆记作为圆,过点、的圆记作为圆,则下列说法中正确的是()A.圆可以经过点 B.点可以在圆的内部C.点可以在圆的内部 D.点可以在圆的内部7.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A. B. C. D.8.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2) B.(3,1) C.(2,2) D.(4,2)9.若α为锐角,且,则α等于()A. B. C. D.10.如图,将一块含30°的直角三角板绕点A按顺时针方向旋转到△A1B1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.30° B.60° C.90° D.120°11.如图,在△ABC中,中线AD、BE相交于点F,EG∥BC,交AD于点G,则的值是()A. B. C. D.12.如图是由5个完全相同的正方体组成的立体图形,它的主视图是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.14.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线和的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①阴影部分的面积为;②若B点坐标为(0,6),A点坐标为(2,2),则;③当∠AOC=时,;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是____________(填写正确结论的序号).15.如果一元二次方程经过配方后,得,那么a=________.16.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.17.如果抛物线与轴的一个交点的坐标是,那么与轴的另一个交点的坐标是___________.18.若⊙P的半径为5,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是_____.三、解答题(共78分)19.(8分)如图,在直角坐标系中,点B的坐标为,过点B分别作x轴、y轴垂线,垂足分别是C,A,反比例函数的图象交AB,BC分别于点E,F.(1)求直线EF的解析式.(2)求四边形BEOF的面积.(3)若点P在y轴上,且是等腰三角形,请直接写出点P的坐标.20.(8分)一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.21.(8分)为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?22.(10分)如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)23.(10分)如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.24.(10分)已知:如图,B,C,D三点在上,,PA是钝角△ABC的高线,PA的延长线与线段CD交于点E.(1)请在图中找出一个与∠CAP相等的角,这个角是;(2)用等式表示线段AC,EC,ED之间的数量关系,并证明.25.(12分)如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为50万元,2017年交易额为72万元.(1)求2015年至2017年“双十一”交易额的年平均增长率;(2)如果按(1)中的增长率,到2018年“双十一”交易额是否能达到100万元?请说明理由.26.每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为30元的护眼台灯以80元售出,平均每月能售出200盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式;(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?
参考答案一、选择题(每题4分,共48分)1、B【分析】连接BD,如图,利用菱形的性质得AC⊥BD,AD=BC,AD∥BC,再证明EF∥BD,接着判断四边形BDEF为平行四边形得到DE=BF,设AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后证明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性质得到AH:AC的值.【题目详解】解:连接BD,如图,∵四边形ABCD为菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF,由AE:FB=1:2,设AE=x,FB=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故选:B.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知菱形的性质及相似三角形的性质.2、D【解题分析】连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=12AB=12(9−1)=4cm,∵OA=5,则OD=5−DE,在Rt△OAD中,,即解得DE=2cm.故选D.3、C【分析】必然事件就是一定发生的事件,依据定义即可判断【题目详解】解:A.经过有交通信号灯的路口,遇到红灯是随机事件;B.明天太阳从西方升起是不可能事件;C.任意画一个三角形,其内角和是是必然事件;D.购买一张彩票,中奖是随机事件;故选:【题目点拨】本题考查的是必然事件,必然事件是一定发生的事件.4、C【解题分析】分析:因为函数图象在一、三象限,故有m>0,故①错误;在每个象限内,y随x的增大而减小,故②错;对于③,将A、B坐标代入,得:h=-m,,因为m>0,所以,h<k,故③正确;函数图象关于原点对称,故④正确.因此,正确的是③④.故选C.5、A【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【题目详解】∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选A.6、B【分析】根据已知条件确定各点与各圆的位置关系,对各个选项进行判断即可.【题目详解】∵点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为∴点C可以在圆的内部,故A错误,B正确;∵过点B、C的圆记作为圆∴点A可以在圆的外部,故C错误;∴点B可以在圆的外部,故D错误.故答案为B.【题目点拨】本题考查了点与圆的位置关系,根据题意画出各点与各圆的位置关系进行判断即可.7、A【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【题目详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率==.故选:A.【题目点拨】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.8、A【题目详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.9、B【解题分析】根据得出α的值.【题目详解】解:∵∴α-10°=60°,
即α=70°.
故选:B.【题目点拨】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.10、D【分析】先判断出旋转角最小是∠CAC1,根据直角三角形的性质计算出∠BAC,再由旋转的性质即可得出结论.【题目详解】∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴旋转角最小是∠CAC1,∵∠C=90°,∠B=30°,∴∠BAC=60°,∵△AB1C1由△ABC旋转而成,∴∠B1AC1=∠BAC=60°,∴∠CAC1=180°﹣∠B1AC1=180°﹣60°=120°,故选:D.【题目点拨】此题考查旋转的性质,熟知图形旋转后所得图形与原图形全等是解题的关键.11、C【分析】先证明AG=GD,得到GE为△ADC的中位线,由三角形的中位线可得GEDCBD;由EG∥BC,可证△GEF∽△BDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案.【题目详解】∵E为AC中点,EG∥BC,∴AG=GD,∴GE为△ADC的中位线,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故选:C.【题目点拨】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键.12、B【分析】主视图就是从正面看,根据横竖正方形的个数可以得到答案.【题目详解】主视图就是从正面看,视图有2层,一层3个正方形,二层左侧一个正方形.故选B【题目点拨】本题考核知识点:三视图.解题关键点:理解三视图意义.二、填空题(每题4分,共24分)13、【分析】根据几何概率的求解公式即可求解.【题目详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【题目点拨】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.14、②④【分析】由题意作AE⊥y轴于点E,CF⊥y轴于点F,①由S△AOM=|k1|,S△CON=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|)=(k1-k2);②由平行四边形的性质求得点C的坐标,根据反比例函数图象上点的坐标特征求得系数k2的值.③当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;④若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,同时也关于y轴对称.【题目详解】解:作AE⊥y轴于E,CF⊥y轴于F,如图:∵S△AOM=|k1|,S△CON=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|);而k1>0,k2<0,∴S阴影部分=(k1-k2),故①错误;②∵四边形OABC是平行四边形,B点坐标为(0,6),A点坐标为(2,2),O的坐标为(0,0).∴C(-2,4).又∵点C位于y=上,∴k2=xy=-2×4=-1.故②正确;当∠AOC=90°,∴四边形OABC是矩形,
∴不能确定OA与OC相等,而OM=ON,
∴不能判断△AOM≌△CNO,
∴不能判断AM=CN,
∴不能确定|k1|=|k2|,故③错误;若OABC是菱形,则OA=OC,而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,
∴|k1|=|k2|,
∴k1=-k2,
∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.
故答案是:②④.【题目点拨】本题属于反比例函数的综合题,考查反比例函数的图象、反比例函数k的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键.15、-6【解题分析】∵,∴,∴a=-6.16、-2【解题分析】试题解析:由韦达定理可得,故答案为17、【分析】根据抛物线y=ax2+2ax+c,可以得到该抛物线的对称轴,然后根据二次函数图象具有对称性和抛物线y=ax2+2ax+c与x轴的一个交点的坐标是(1,0),可以得到该抛物线与x轴的另一个交点坐标.【题目详解】∵抛物线y=ax2+2ax+c=a(x+1)2-a+c,
∴该抛物线的对称轴是直线x=-1,
∵抛物线y=ax2+2ax+c与x轴的一个交点的坐标是(1,0),
∴该抛物线与x轴的另一个交点的坐标是(-3,0),
故答案为:(-3,0).【题目点拨】此题考查二次函数的图形及其性质,解题的关键是明确题意,利用二次函数的性质解答.18、点O在⊙P上【分析】由勾股定理等性质算出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【题目详解】解:由勾股定理,得OP==5,d=r=5,故点O在⊙P上.故答案为点O在⊙P上.【题目点拨】此题考查点与圆的位置关系的判断.解题关键在于要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.三、解答题(共78分)19、(1);(2)1;(3)点P的坐标为或.【分析】(1)点E与点B的纵坐标相同,点F与点B的横坐标相同,分别将y=1,x=2代入反比例函数解析式,可求出E、F的坐标,然后采用待定系数法即可求出直线EF的解析式;(2)利用即可求出答案;(3)设P点坐标为(0,m),分别讨论OP=OE,OP=PE,OE=PE三种情况,利用两点间的距离公式求出m即可得到P点坐标.【题目详解】解:(1)轴,轴,将代入,得将代入得:,设直线EF的解析式为把E、F的坐标代入解得∴直线EF的解析式为(2)由题意可得:=1(3)设P点坐标为(0,m),∵E(1,1),∴,,①当OP=OE时,,解得,∴P点坐标为或②当OP=PE时,,解得∴P点坐标为③当OE=PE时,,解得,当m=0时,P与原点重合,不符合题意,舍去,∴P点坐标为综上所述,点P的坐标为或【题目点拨】本题考查了反比例函数的图象与性质,待定系数法求一次函数解析式,以及等腰三角形的性质,熟练掌握待定系数法求函数解析式和两点间的距离公式并进行分类讨论是解题的关键.20、(1),;(2).【分析】(1)把A(﹣1,4)代入反比例函数可得m的值,再把B(2,n)代入反比例函数的解析式得到n的值;然后利用待定系数法确定一次函数的解析式;(2)由BC⊥y轴,垂足为C以及B点坐标确定C点坐标,可求出直线AC的解析式,进一步求出点E的坐标,然后计算得出△AED的面积S.【题目详解】解:(1)把A(﹣1,4)代入反比例函数得,m=﹣1×4=﹣4,所以反比例函数的解析式为,把B(2,n)代入得,2n=﹣4,解得n=﹣2,所以B点坐标为(2,﹣2),把A(﹣1,4)和B(2,﹣2)代入一次函数,得:,解得:,所以一次函数的解析式为;(2)∵BC⊥y轴,垂足为C,B(2,﹣2),∴C点坐标为(0,﹣2).设直线AC的解析式为,∵A(﹣1,4),C(0,﹣2),∴,解得:,∴直线AC的解析式为,当y=0时,﹣6x﹣2=0,解答x=,∴E点坐标为(,0),∵直线AB的解析式为,∴直线AB与x轴交点D的坐标为(1,0),∴DE=,∴△AED的面积S==.【题目点拨】本题考查1.反比例函数与一次函数的交点问题;2.综合题,利用数形结合思想解题是关键.21、(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解题分析】试题分析:(1)根据销售额=销售量×销售价单x,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.22、大树的高约为6.0米.【分析】作CM⊥DB于点M,已知BC的坡度即可得到BM和CM的比值,在Rt△MBC中,利用勾股定理即可求得BM和MC的长度,再在Rt△DCM中利用三角函数求得DM的长,由BD=BM+DM即可求得大树BD的高.【题目详解】作CM⊥DB于点M,∵斜坡AF的坡度是1::2.4,∠A=∠BCM,∴==,∴在直角△MBC中,设BM=5x,则CM=12x.由勾股定理可得:BM2+CM2=BC2,∴(5x)2+(12x)2=6.52,解得:x=,∴BM=5x=,CM=12x=6,在直角△MDC中,∠DCM=∠EDG=30°,∴DM=CM•tan∠DCM=6tan30°=6×=2,∴BD=DM+BM=+2≈2.5+2×1.732≈6.0(米).答:大树的高约为6.0米.【题目点拨】本题考查了解直角三角形的应用,正确作出辅助线,构造直角三角形模型是解决问题的关键.23、(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE=45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【题目详解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵点B、C关于原点对称,点B(a,a+1)(a>0),∴OB=OC=5,点C(﹣a,﹣a﹣1),∴5=,∴a=3,∴点B(3,4),∴点C(﹣3,﹣4);(2)∵点B(3,4),点C(﹣3,﹣4),点A(﹣5,0),∴BC=10,AB=4,AC=2,∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,∵DE平分∠BDC,∴∠BDE=∠CDE=45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=5,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【题目点拨】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.24、(1)∠BAP;(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.证明见解析.【分析】(1)根据等腰三角形∆ABC三线合一解答即可;(2)连接EB,由PA是△CAB的垂直平分线,得到EC=EB.,∠ECP=∠EBP,∠ECA=∠EBA.然后推出∠BAD=∠BED=90°,利用勾股定理可得EB2+ED2=BD2,找到BD2=2AB2,代入可求的EC2+ED2=2AC2的等量关系即可.【题目详解】(1)∵等腰三角形∆ABC且PA是钝角△ABC的高线∴PA是∠CAB的角平分线∴∠CAP=∠BAP(2)AC,EC,ED满足的数量关系:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销外包面试题及答案
- 西医临床知识点试题及答案
- 灭火器试题及答案
- 期待成功的图书管理员考试试题及答案
- 育婴师资格考试常见考点试题及答案
- 系统架构设计的核心技术考题试题及答案
- 深入学习计算机二级考试试题及答案
- 知识产权争议的解决模式试题及答案
- 商家工具考试题及答案
- 目标与管理的试题及答案
- (2023年度)中央厨房、集体供餐配送单位食品安全全项目自查记录表
- 土的渗透性完整版本
- 强化业务运营管理优化业务流程的工作总结及计划
- 猕猴桃果酱制作方法
- 逆变器行业营销策略方案
- 国民经济行业分类与代码
- 网络互连技术-管控IP数据通信ACL(访问控制列表)
- 幼儿园故事课件:《狼来了》
- 小学英语公开课The-Hug课件
- 第十章 思想政治教育的方法和艺术
- 碱柜治超大队检测站应急预案
评论
0/150
提交评论