保定市博野中学高一下学期月月考数学试卷_第1页
保定市博野中学高一下学期月月考数学试卷_第2页
保定市博野中学高一下学期月月考数学试卷_第3页
保定市博野中学高一下学期月月考数学试卷_第4页
保定市博野中学高一下学期月月考数学试卷_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2016-2017学年河北省保定市博野中学高一(下)5月月考数学试卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个命题,其中正确命题的个数()①若a>|b|,则a2>b2②若a>b,c>d,则a﹣c>b﹣d③若a>b,c>d,则ac>bd④若a>b>o,则>.A.3个 B.2个 C.1个 D.0个2.点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A. B.2 C. D.23.如图,△A’B'C’是△ABC用“斜二测画法"画出的直观图,其中O'B'=O’C'=1,O'A'=,那么△ABC是一个()A.等边三角形 B.直角三角形C.钝角三角形 D.三边互不相等的三角形4.直线l1,l2是分别经过A(1,1),B(0,﹣1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是()A.x+2y﹣3=0 B.x﹣y﹣3=0 C.x+2y+3=0 D.x﹣y+3=05.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题是真命题的是()A.若m∥α,m∥β,则α∥β B.若m∥α,α∥β,则m∥βC.若m⊂α,m⊥β,则α⊥β D.若m⊂α,α⊥β,则m⊥β6.下列命题正确的是()A.两两相交的三条直线可确定一个平面B.两个平面与第三个平面所成的角都相等,则这两个平面一定平行C.过平面外一点的直线与这个平面只能相交或平行D.和两条异面直线都相交的两条直线一定是异面直线7.如图,直线y=ax﹣的图象可能是()A. B. C. D.8.直线(2m+1)x+(m+1)y﹣7m﹣4=0过定点()A.(1,﹣3) B.(4,3) C.(3,1) D.(2,3)9.某几何体的三视图如图所示(在右边的网格线中,每个小正方形的边长为1),则该几何体的表面积为()A.48 B.54 C.60 D.6410.已知三棱锥P﹣ABC的三条侧棱两两互相垂直,且AB=,BC=,AC=2,则此三棱锥的外接球的体积为()A.π B.π C.π D.π11.点(4,0)关于直线5x+4y+21=0的对称点是()A.(﹣6,8) B.(﹣8,﹣6) C.(6,8) D.(﹣6,﹣8)12.如图所示,在著名的汉诺塔问题中有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上:①每次只能移动一个金属片;②在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n),则f(6)=()A.31 B.33 C.63 D.65二、填空题:本题共4小题,每小题5分.13.如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是.14.将直线y=x+﹣1绕它上面一点(1,)沿逆时针方向旋转15°,则所得直线的方程为.15.在△ABC中,角A、B、C所对的边分别是a,b,c,cosC=,且acosB+bcosA=2,则△ABC面积的最大值为.16.在正方体ABCD﹣A1B1C1D1中(如图),已知点P在直线BC1上运动.则下列四个命题:①三棱锥A﹣D1BC的体积不变;②直线AP与平面ACD1所成的角的大小不变;③二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1内到点D和C1距离相等的点,则M点的轨迹是直线AD1其中正确命题的编号是.(写出所有正确命题的编号)三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知A(1,﹣1),B(2,2),C(3,0),求点D的坐标,使直线CD⊥AB,且CB∥AD.18.已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.(Ⅰ)求{an}的通项公式;(Ⅱ)求{bn}的前n项和.19.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acosA=ccosB+bcosC.(Ⅰ)求A;(Ⅱ)若b2+c2=7,求△ABC的面积.20.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,AB⊥AD,AB∥CD,CD=AD=2AB=2AP.(1)求证:平面PCD⊥平面PAD;(2)在侧棱PC上是否存在点E,使得BE∥平面PAD,若存在,确定点E位置;若不存在,说明理由.21.如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC,把△BAC沿AC折起到△PAC的位置,使得P点在平面ADC上的正投影O恰好落在线段AC上,如图2所示,点E、F分别为棱PC、CD的中点.(Ⅰ)求证:平面OEF∥平面APD;(Ⅱ)若AD=3,CD=4,AB=5,求四棱锥E﹣CFO的体积.22.在四棱锥S﹣ABCD中,底面ABCD为平行四边形,∠DBA=60°,∠SAD=30°,,BA=BS=4.(Ⅰ)证明:BD⊥平面SAD;(Ⅱ)求直线SB与平面ABCD所成角的正弦值.

2016-2017学年河北省保定市博野中学高一(下)5月月考数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个命题,其中正确命题的个数()①若a>|b|,则a2>b2②若a>b,c>d,则a﹣c>b﹣d③若a>b,c>d,则ac>bd④若a>b>o,则>.A.3个 B.2个 C.1个 D.0个【考点】2K:命题的真假判断与应用.【分析】直接由不等式的可乘积性判断①;举例说明②③④错误.【解答】解:①若a>|b|,则a2>b2,①正确;②若a>b,c>d,则a﹣c>b﹣d错误,如3>2,﹣1>﹣3,而3﹣(﹣1)=4<5=2﹣(﹣3);③若a>b,c>d,则ac>bd错误,如3>1,﹣2>﹣3,而3×(﹣2)<1×(﹣3);④若a>b>o,则,当c>0时,<,④错误.∴正确命题的个数只有1个.故选:C.2.点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A. B.2 C. D.2【考点】IT:点到直线的距离公式.【分析】过O作已知直线的垂线,垂足为P,此时|OP|最小,所以|OP|最小即为原点到直线的距离,利用点到直线的距离公式求出即可.【解答】解:由题意可知:过O作已知直线的垂线,垂足为P,此时|OP|最小,则原点(0,0)到直线x+y﹣4=0的距离d==2,即|OP|的最小值为2.故选B.3.如图,△A'B’C'是△ABC用“斜二测画法”画出的直观图,其中O’B'=O'C'=1,O’A'=,那么△ABC是一个()A.等边三角形 B.直角三角形C.钝角三角形 D.三边互不相等的三角形【考点】LD:斜二测法画直观图.【分析】根据“斜二测画法”的画图法则,结合已知,可得△ABC中,BO=CO=1,AO=,结合勾股定理,求出△ABC的三边长,可得△ABC的形状.【解答】解:由已知中△ABC的直观图中O’B’=O’C’=1,O’A’=,∴△ABC中,BO=CO=1,AO=,由勾股定理得:AB=AC=2,又由BC=2,故△ABC为等边三角形,故选:A.4.直线l1,l2是分别经过A(1,1),B(0,﹣1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是()A.x+2y﹣3=0 B.x﹣y﹣3=0 C.x+2y+3=0 D.x﹣y+3=0【考点】IU:两条平行直线间的距离.【分析】由题意可得,l1,l2间的距离最大时,AB和这两条直线都垂直.利用斜率计算公式及其相互垂直的直线斜率之间的关系即可得出.【解答】解:由题意可得,l1,l2间的距离最大时,AB和这两条直线都垂直.由于AB的率为=2,故直线l1的斜率为﹣,故它的方程是y﹣1=﹣(x﹣1),化简为x+2y﹣3=0,故选:A.5.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题是真命题的是()A.若m∥α,m∥β,则α∥β B.若m∥α,α∥β,则m∥βC.若m⊂α,m⊥β,则α⊥β D.若m⊂α,α⊥β,则m⊥β【考点】LP:空间中直线与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,m∥β或m⊂β;在C中,由面面垂直的判定定理得α⊥β;在D中,m⊥与β相交、平行或m⊂β.【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m∥α,m∥β,则α与β相交或平行,故A错误;在B中,若m∥α,α∥β,则m∥β或m⊂β,故B错误;在C中,若m⊂α,m⊥β,则由面面垂直的判定定理得α⊥β,故C正确;在D中,若m⊂α,α⊥β,则m⊥与β相交、平行或m⊂β,故D错误.故选:C.6.下列命题正确的是()A.两两相交的三条直线可确定一个平面B.两个平面与第三个平面所成的角都相等,则这两个平面一定平行C.过平面外一点的直线与这个平面只能相交或平行D.和两条异面直线都相交的两条直线一定是异面直线【考点】LJ:平面的基本性质及推论.【分析】根据空间中的直线与平面的位置关系以及平面的基本性质,对选项中的命题判断正误即可.【解答】解:对于A,两两相交的三条直线可确定一个平面或三个平面,故A错误;对于B,两个平面与第三个平面所成的角都相等,则这两个平面平行或相交,故B错误;对于C,过平面外一点的直线一定在平面外,且直线与这个平面相交或平行,故C正确;对于D,和两条异面直线都相交的两条直线是异面直线或共面直线,故D错误.故选:C.7.如图,直线y=ax﹣的图象可能是()A. B. C. D.【考点】3O:函数的图象.【分析】利用一次函数的斜率和截距异号及其意义即可得出.【解答】解:方程直线的可以看作一次函数,其斜率a和截距异号,只有A符合,其斜率和截距都为负.故选:A.8.直线(2m+1)x+(m+1)y﹣7m﹣4=0过定点()A.(1,﹣3) B.(4,3) C.(3,1) D.(2,3)【考点】IP:恒过定点的直线.【分析】直线方程整理后,列出关于x与y的方程组,求出方程组的解得到x与y的值,即可确定出直线过的定点.【解答】解:直线方程整理得:2mx+x+my+y﹣7m﹣4=0,即(2x+y﹣7)m+(x+y﹣4)=0,∴,解得:,则直线过定点(3,1),故选:C.9.某几何体的三视图如图所示(在右边的网格线中,每个小正方形的边长为1),则该几何体的表面积为()A.48 B.54 C.60 D.64【考点】L!:由三视图求面积、体积.【分析】由三视图知该几何体是底面为矩形的四棱锥,根据图中数据计算它的表面积即可.【解答】解:由三视图可知:该几何体是底面为矩形的四棱锥,如图所示;根据图中数据,计算它的表面积为S=S矩形ABCD+S△PAB+2S△PAD+S△PCD=3×6+×6×4+2××3×5+×6×5=60.故选:C.10.已知三棱锥P﹣ABC的三条侧棱两两互相垂直,且AB=,BC=,AC=2,则此三棱锥的外接球的体积为()A.π B.π C.π D.π【考点】LF:棱柱、棱锥、棱台的体积.【分析】求出PA=1,PC=,PB=2,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的体积公式,可算出三棱锥P﹣ABC外接球的体积.【解答】解:∵AB=,BC=,AC=2,∴PA=1,PC=,PB=2以PA、PB、PC为过同一顶点的三条棱,作长方体如图则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为=2,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的体积是πR3=π×()3=π故选:B.11.点(4,0)关于直线5x+4y+21=0的对称点是()A.(﹣6,8) B.(﹣8,﹣6) C.(6,8) D.(﹣6,﹣8)【考点】IQ:与直线关于点、直线对称的直线方程.【分析】设出对称点的坐标,利用对称点的连线被对称轴垂直平分,建立方程组,即可求得结论.【解答】解:设点M的坐标为(a,b),则∴a=﹣6,b=﹣8∴M(﹣6,﹣8),故选D.12.如图所示,在著名的汉诺塔问题中有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上:①每次只能移动一个金属片;②在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n),则f(6)=()A.31 B.33 C.63 D.65【考点】F4:进行简单的合情推理.【分析】根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.【解答】解:设f(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数n=1时,f(1)=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即h(2)=3=22﹣1;n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱,[用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成],f(3)=f(2)×f(2)+1=3×2+1=7=23﹣1,f(4)=f(3)×f(3)+1=7×2+1=15=24﹣1,…以此类推,h(n)=h(n﹣1)×h(n﹣1)+1=2n﹣1,∴f(6)=26﹣1=63.故选:C.二、填空题:本题共4小题,每小题5分.13.如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是πr2(a+b).【考点】NF:平面与圆柱面的截线;LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】用补形法:两个相同的几何体,倒立一个,对应合缝,恰好形成一个圆柱体.求出总体积的一半即可.【解答】解:取两个相同的几何体,倒立一个,对应合缝,恰好形成一个圆柱体.所求几何体的体积:=故答案为:14.将直线y=x+﹣1绕它上面一点(1,)沿逆时针方向旋转15°,则所得直线的方程为x﹣y=0.【考点】IG:直线的一般式方程.【分析】由直线y=x+﹣1算出直线的倾斜角,再由旋转角度得到所求直线的倾斜角,然后用点斜式写出方程【解答】解:直线y=x+﹣1的斜率为1,故倾斜角为45°,旋转后的直线的倾斜角为60°,斜率为,故所求直线方程为y﹣=(x﹣1),即x﹣y=0.故答案为x﹣y=015.在△ABC中,角A、B、C所对的边分别是a,b,c,cosC=,且acosB+bcosA=2,则△ABC面积的最大值为.【考点】HR:余弦定理;HP:正弦定理.【分析】利用余弦定理分别表示出cosB和cosA,代入到已知的等式中,化简后即可求出c的值,然后利用余弦定理表示出c2=a2+b2﹣2abcosC,把c及cosC的值代入后,利用基本不等式即可求出ab的最大值,然后由cosC的值,及C的范围,利用同角三角函数间的基本关系求出sinC的值,利用三角形的面积公式表示出三角形ABC的面积,把ab的最大值及sinC的值代入即可求出面积的最大值.【解答】(本题满分为12分)解:∵acosB+bcosA=2,∴a×+b×=2,∴c=2,…∴4=a2+b2﹣2ab×≥2ab﹣2ab×=ab,∴ab≤(当且仅当a=b=时等号成立)…由cosC=,得sinC=,…∴S△ABC=absinC≤××=,故△ABC的面积最大值为.故答案为:.…16.在正方体ABCD﹣A1B1C1D1中(如图),已知点P在直线BC1上运动.则下列四个命题:①三棱锥A﹣D1BC的体积不变;②直线AP与平面ACD1所成的角的大小不变;③二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1内到点D和C1距离相等的点,则M点的轨迹是直线AD1其中正确命题的编号是①③④.(写出所有正确命题的编号)【考点】L2:棱柱的结构特征.【分析】利用体积公式判断①,利用向量计算夹角判断②,根据二面角的定义判断③,利用全等判断④.【解答】解:对于①,显然三棱锥A﹣D1BC体积与P点位置无关,故①正确;对于②,以D1为坐标原点,建立如图所示的空间坐标系,设正方体边长为1,则=(1,1,﹣1)为平面ACD1的法向量,而=(1,0,0),=(1,﹣1,﹣1),∴cos<>==,cos<,>==,∴AB,AC1与平面ACD1所成的角不相等,即当p在直线BC1上运动时,AP平面ACD1所成的角会发生变化,故②错误;对于③,当P位置变化时,平面PAD1的位置不发生变化,故二面角P﹣AD1﹣C的大小不变,故③正确;对于④,设Q为直线A1D1上任意一点,则Rt△QDD1≌Rt△QC1D1,∴QD=QC1,∴M的轨迹为直线AD1,故④正确.故答案为:①③④.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知A(1,﹣1),B(2,2),C(3,0),求点D的坐标,使直线CD⊥AB,且CB∥AD.【考点】I8:两条直线平行与倾斜角、斜率的关系.【分析】此题求D的坐标,需要建立其横纵坐标的方程,由题设条件知直线CD⊥AB,且CB∥AD,将此位置关系转化为方程,即可求出点D的坐标.【解答】解:设点D的坐标为(x,y),由已知得,直线AB的斜率KAB=3,直线CD的斜率KCD=,直线CB的斜率KCB=﹣2,直线AD的斜率KAD=.由CD⊥AB,且CB∥AD,得,所以点D的坐标是(0,1)18.已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.(Ⅰ)求{an}的通项公式;(Ⅱ)求{bn}的前n项和.【考点】8H:数列递推式.【分析】(Ⅰ)令n=1,可得a1=2,结合{an}是公差为3的等差数列,可得{an}的通项公式;(Ⅱ)由(1)可得:数列{bn}是以1为首项,以为公比的等比数列,进而可得:{bn}的前n项和.【解答】解:(Ⅰ)∵anbn+1+bn+1=nbn.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{an}是公差为3的等差数列,∴an=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)bn+1+bn+1=nbn.即3bn+1=bn.即数列{bn}是以1为首项,以为公比的等比数列,∴{bn}的前n项和Sn==(1﹣3﹣n)=﹣.19.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acosA=ccosB+bcosC.(Ⅰ)求A;(Ⅱ)若b2+c2=7,求△ABC的面积.【考点】HT:三角形中的几何计算.【分析】(Ⅰ)根据正弦定理和以及两角和正弦公式即可得到cosA=,问题得以解决,(Ⅱ)根据正弦定理和余弦定理可得bc的值,即可求出三角形的面积.【解答】解:(Ⅰ)因为2acosA=ccosB+bcosC,则由正弦定理得:2sinA•cosA=sinCcosB+sinBcosC,所以2sinA•cosA=sin(B+C)=sinA,又0<A<π,所以sinA≠0,从而2cosA=1,cosA=,故A=;(Ⅱ)由A=知sinA=,而△ABC的外接圆半径为1,故由正弦定理可得a=2sinA=,再由余弦定理a2=b2+c2﹣2bccosA,可得bc=b2+c2﹣a2=7﹣3=4,∴S△ABC=bcsinA=.20.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,AB⊥AD,AB∥CD,CD=AD=2AB=2AP.(1)求证:平面PCD⊥平面PAD;(2)在侧棱PC上是否存在点E,使得BE∥平面PAD,若存在,确定点E位置;若不存在,说明理由.【考点】LY:平面与平面垂直的判定.【分析】(1)根据面面垂直的判断定理即可证明平面PCD⊥平面PAD;(2)根据线面平行的性质定理即可得到结论.【解答】(1)证明:∵PA⊥平面ABCD∴PA⊥CD①又∵AB⊥AD,AB∥CD,∴CD⊥AD②由①②可得CD⊥平面PAD又CD⊂平面PCD∴平面PCD⊥平面PAD(2)解:当点E是PC的中点时,BE∥平面PAD.证明如下:设PD的中点为F,连接EF,AF易得EF是△PCD的中位线∴EF∥CD,EF=CD由题设可得AB∥CD,AF=CD∴EF∥AB,EF=AB∴四边形ABEF为平行四边形∴BE∥AF又BE⊄平面PAD,AF⊂平面PAD∴BE∥平面PAD21.如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC,把△BAC沿AC折起到△PAC的位置,使得P点在平面ADC上的正投影O恰好落在线段AC上,如图2所示,点E、F分别为棱PC、CD的中点.(Ⅰ)求证:平面OEF∥平面APD;(Ⅱ)若AD=3,CD=4,AB=5,求四棱锥E﹣CFO的体积.【考点】LF:棱柱、棱锥、棱台的体积;LU:平面与平面平行的判定.【分析】(Ⅰ)推

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论