版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1集成电路设计第五章CMOS反相器2Outline电路特性反相器CMOS反相器电压传输特性噪声容限传输延迟驱动大电容负载功耗及低功耗设计35-1特性成本复杂性和面积完整性和稳定性静态(稳态)特性性能动态(瞬态)特性能量效率能耗和功率45-2反相器(Inverter)VinVoutCLVDDCMOSInverterPolysiliconInOutVDDGNDPMOS2lMetal1NMOSContactsNWell5TwoInvertersConnectinMetalSharepowerandground6CMOS反相器基本特点输出电源和GND噪声容限大逻辑电平与尺寸无关,可以采用最小尺寸稳态输出时,VDD或GND与输出之间总存在有限电阻的通路低输出阻抗对噪声和干扰不敏感极高的输入阻抗(inputresistance)稳态下Vdd
和GND间无直流通路无静态功耗传输延迟(Propagationdelay)是负载电容和晶体管电阻的函数。7CMOSInverter
——First-OrderDCAnalysisVOL=0VOH=VDDVM=f(Rn,Rp)VDDVDDVin=VDDVin=0VoutVoutRnRp8CMOSInverter:TransientResponse
tpHL=f(Ron.CL)=0.69RonCLVoutVoutRnRpVDDVDDVin=VDDVin=0(a)Low-to-high(b)High-to-lowCLCL95-3VoltageTransferCharacteristicNMOS+PMOS图解法10I-VNMOSID(A)VDS(V)X10-4VGS=1.0VVGS=1.5VVGS=2.0VVGS=2.5VLineardependenceNMOStransistor,0.25um,Ld=0.25um,W/L=1.5,VDD=2.5V,VT=0.4V11I-VPlot(PMOS)ID(A)VDS(V)X10-4VGS=-1.0VVGS=-1.5VVGS=-2.0VVGS=-2.5VPMOStransistor,0.25um,Ld=0.25um,W/L=1.5,VDD=2.5V,VT=-0.4VAllpolaritiesofallvoltagesandcurrentsarereversed12PMOSLoadLinesVoutIDnVin=VDD+VGSpIDn=-IDpVout=VDD+VDSpVinVoutCLVDD13PMOSLoadLinesVDSpIDpVGSp=-2.5VGSp=-1VDSpIDnVin=0Vin=1.5VoutIDnVin=0Vin=1.5Vin=VDD+VGSpIDn=-IDpVout=VDD+VDSp14CMOSInverterLoadCharacteristics
15CMOSInverterVTC
16噪声容限logic1logic0unknownVDDVSSVHVL反映了对噪声的敏感程度;电路0,1电平允许的输入范围;越大越好;高电平噪声容限低电平噪声容限17LogiclevelmatchingLevelsatoutputofonegatemustbesufficienttodrivenextgate.18TransfercharacteristicsTransfercurveshowsstaticinput/outputrelationship—holdinputvoltage,measureoutputvoltage.19反相器噪声容限的三种求法求法1最低输出高电平、最高输出低电平;找到对应的输入;求差;VNL=Voff–VilVNH=Vih–VonVolVol,maxVoh,minVohVonVihVoffVil20求法2单位增益点(斜率为1,-1);找到对应的输入;求差;VNL=Voff–VilVNH=Vih–VonVolVol,maxVoh,minVohVonVihVoffVil21求法3工作中心点;Vin=VoutVgs=Vds找到对应的输入;求差;22NoiseMarginsDeterminingVIHandVILVinVoutVOH=VDDVMBydefinition,VIHandVILarewheredVout/dVin=-1(=gain)VOL=GNDApiece-wiselinearapproximationofVTCNMH=VDD-VIHNML=VIL-GNDApproximating:VIH=VM-VM/gVIL=VM+(VDD-VM)/gSohighgaininthetransitionregionisverydesirable23CMOSInverterVTCfromSimulationVin(V)Vout(V)0.25um,(W/L)p/(W/L)n=3.4(W/L)n=1.5(minsize)VDD=2.5VVM
1.25V,g=-27.5VIL=1.2V,VIH=1.3VNML=NMH=1.2(actualvaluesareVIL=1.03V,VIH=1.45VNML=1.03V&NMH=1.05V)Outputresistancelow-output=2.4k
high-output=3.3k
24VM与PMOS及NMOS的宽长比(W/L)p/(W/L)nVM(V)IncreasingthewidthofthePMOSmovesVMtowardsVDDIncreasingthewidthoftheNMOSmovesVMtowardGND决定因素:宽长比近似为等效电阻之比。.1工艺因子:k’=µCox导电因子:βn
=k’(W/L)~3.4Rn≈1/[βn
(Vgs–Vt)]25GainDeterminatesVingainGainisastrongfunctionoftheslopesofthecurrentsinthesaturationregion,forVin=VM(1+r)g
----------------------------------(VM-VTn-VDSATn/2)(
n-
p)Determinedbytechnologyparameters,especiallychannellengthmodulation().OnlydesignerinfluencethroughsupplyvoltageandVM(transistorsizing).26GainasafunctionofVDDGain=-1100mv时,VTC变差;过渡区增益接近-1一般,为达到足够的增益,电源应大于热电势的两倍VDDmin>2,4KT/qKT/q室温下约为26mv27SimulatedVTC
28ImpactofProcessVariations00.511.522.500.511.522.5Vin(V)Vout(V)GoodPMOSBadNMOSGoodNMOSBadPMOSNominal295-4传输延迟(PropagationDelay)30DelayAssumeidealinput(step),RCload.31tpHL=f(Ron.CL)=0.69RonCLVoutVoutRnRpVDDVDD(a)Low-to-high(b)High-to-lowCLCL上升时间(risetime),pullupon;下降时间(falltime),pullupoff.32CurrentthroughtransistorTransistorstartsinsaturationregion,thenmovestolinearregion.Vout增大充电电流减小。
Vds
减小。33Resistiveapproximation可使用积分求解等效电阻平均值34Req
——求VDD/2,VDD区间的电阻平均值35GatedelayDelay:
传输延迟VDD
50%VDD50%VDD
VDDTransitiontime:
转换时间timerequiredforgate’soutputtoreach10%(logic0)or90%(logic1)offinalvalue.10%
90%90%
10%36InverterdelaycircuitLoadisresistor+capacitor,driverisresistor.37Inverterdelaywithtmodeltmodel:gatedelaybasedonRCtimeconstantt.Vout(t)=VDDexp{-t/(Rn+RL)CL}90%(logic1)
10%
(logic0)tf=2.2RCL100%(logic1)
50%tD=0.69RCLForpulluptime,usepullupresistance.38tmodelinverterdelay0.5micronprocess:Rn=3.9kWCL=0.68fF延迟时间td=0.69x3.9x0.68E-15=1.8ps.上升延迟tf=2.2x3.9x0.68E-15=5.8ps.39QualityofRCapproximation40VDDVoutVin
=VDDRonCLtpHL
=f(Ron.CL)=0.69RonCLtVoutVDDRonCL10.5ln(0.5)0.3641传播延迟
——50%平均延迟时间tp=0.69CL(Reqn+Reqp)/2tpLHtpHLVOUT=0.5VDD时42Rn≈1/[
n
(Vgs–Vt)]Rn∝1/
n导电因子
n=k’(W/L)k’=µnCoxCg=Cox*(W*L)43DelayasafunctionofVDD44等效电阻与W/L成反比;当VDD>>Vt+VDD/2时,等效电阻与电源无关;当VDD<=Vt时,急剧增大。IDS=βn
[(Vgs–Vt)-Vds/2]Vds45性能设计考虑
——提高速度减小负载电容增大尺寸watchoutforself-loading!提高VDD
(?)465-5驱动大电容负载VinVoutCLVDD大电容负载off-chipload;longwireson-chip;Clockwireonchip.提高速度的措施增大尺寸带来的问题输入电容的增加前级电路负载增大47反相器的输入电容栅电容PMOS栅电容CGpNMOS栅电容CGnCin
=CGn
+CGpCin=Cox(AGn
+AGp)Cin=CoxL(Wn
+Wp)Cin=CoxLWn(1+r)=(1+r)CGn48InverterChainIfCL
isgiven:Howmanystagesareneededtominimizethedelay?Howtosizetheinverters?CLInOut49InverterDelayMinimumlengthdevices,L=0.25mmAssumethatforWP=2WN=2Wsamepull-upandpull-downcurrentsapprox.equalresistancesRN=RPapprox.equalrisetpLHandfalltpHLdelaysAnalyzeasanRCnetworktpHL=(ln2)RNCLtpLH=(ln2)RPCLDelay(D):2WWLoadforthenextstage:50InverterwithLoadLoad(CL)DelayAssumptions:noload->zerodelayCLtp=k
RWCLRWRWWunit=1kisaconstant,equalto0.6951输出端电容构成Cout=CFET+CLtf=2.2Rn
(
CFET+CL)tr=2.2Rp
(
CFET+CL)CFET由几何图形决定52InverterwithLoadLoadDelayCintCLDelay=kRW(Cint+CL)=kRWCint+kRWCL
=kRW
Cint(1+CL/Cint)=Delay(Internal)+Delay(Load)CN=CunitCP=2Cunit2WW53DelayFormulaCint=gCgin
with
g
1f=CL/Cgin
-effectivefanoutR=Runit/W;Cint=WCunittp0=0.69RunitCunit54ApplytoInverterChainCLInOut12Ntp=tp1+tp2+…+tpN55OptimalTaperingforGivenNDelayequationhasN-1unknowns,Cgin,2–Cgin,NMinimizethedelay,findN-1partialderivativesResult:Cgin,j+1/Cgin,j=Cgin,j/Cgin,j-1Sizeofeachstageisthegeometricmeanoftwoneighborseachstagehasthesameeffectivefanout(Cout/Cin)eachstagehasthesamedelay56延迟时间及级数优化Wheneachstageissizedbyfandhassameeff.fanout
f:MinimumpathdelayEffectivefanoutofeachstage:57ExampleCL=8C1InOutC1CL/C1hastobeevenlydistributedacrossN=3stages:58级数优化Foragivenload,CLandgiveninputcapacitanceCinFindoptimalsizingf59级数的近似收敛解:Forg=0,f=e,N=lnFCint=g
Cgin此时,忽略自载。f=e=2.71828,N=lnF60OptimumEffectiveFanout
fOptimumfforgivenprocessdefinedbygfopt=3.6for
g=161BufferDesign111186464646442.881622.6N f tp1 64 652 8 183 4 154 2.8 15.3625-6功耗(PowerDissipation)LeadmicroprocessorspowercontinuestoincreaseP6Pentium®486386286808680858080800840040.1110100197119741978198519922000YearPower(Watts)63ChipPowerDensity40048008808080858086286386486Pentium®P611010010001000019701980199020002010YearPowerDensity(W/cm2)HotPlateNuclearReactorRocketNozzleSun’sSurface…chipsmightbecomehot…Source:Borkar,DeIntel
64ChipPowerDensityDistributionPowerdensityisnotuniformlydistributedacrossthechipSiliconisnotagoodheatconductorMaxjunctiontemperatureisdeterminedbyhot-spotsImpactonpackaging,coolingPowerMapOn-DieTemperature65PowerDissipationSource:Borkar,DeIntel
来源:动态功耗(DynamicPowerConsumption)ChargingandDischargingCapacitors短路电流(ShortCircuitCurrents)CircuitPathbetweenSupplyRailsduringSwitching漏电流(Leakage)Leakingdiodesandtransistors66PowerconsumptioncircuitInputissquarewave.67驱动电路i(t)=dQ/dt
,i=c*dV/dt电压不能突变,栅电压的变化有延迟时间。Q=CVC大,意味着延迟时间加长影响C的因素?P=V(C*dV/dt)=d(0.5CV2
)
/dtE=0.5CV2输入从0到VDD时,E=0.5CVDD2每次开关消耗能量。68动态功耗VinVoutCLVddAsinglecycleE=CL(VDD-VSS)2.Clockfrequencyf=1/t.EnergyE=CL(VDD-VSS)2.PowerE*f=fCL(VDD-VSS)2.影响因素
fCLVDD
其中负载消耗1/2。69Energy/transition=CL*VDD2*P0
1Pdyn=(Energy/transition)*f=CL*VDD2*P0
1*fPdyn=CEFF*VDD2*fwhereCEFF=P01CL
f0
1Datadependent-afunctionofswitchingactivity!70Considera0.25micronchip,500MHzclock,averageloadcapof15fF/gate(fanoutof4),2.5Vsupply.DynamicPowerconsumptionpergateis??46.875uw?
With1milliongates(assumingeachtransitionseveryclock)DynamicPowerofentirechip=??.46.875w?71LoweringDynamicPowerPdyn=CLVDD2P01fCapacitance:Functionoffan-out,wirelength,transistorsizesSupplyVoltage:HasbeendroppingwithsuccessivegenerationsClockfrequency:Increasing…Activityfactor:Howoften,onaverage,dowiresswitch?72Speed-powerproductPower-delayproduct(PDP
)SP=P/f=CV273短路电流(ShortCircuitCurrent)IVDD
(mA)0.150.100.05Vin
(V)5.04.03.02.01.00.0VinVoutCLVdd74Durationandslopeoftheinputsignal,tscIpeakdeterminedbythesaturationcurrentofthePandNtransistorswhichdependontheirsizes,processtechnology,temperature,etc.strongfunctionoftheratiobetweeninputandoutputslopesafunctionofCLEsc/transition=tscVDD
IpeakP01Psc=tscVDD
Ipeakf0175IpeakasaFunctionofCLIpeak(A)time(sec)x10-10x10-4CL=20fFCL=100fFCL=500fF76ImpactofCLonPscVinVoutCLIsc
0VinVoutCLIsc
ImaxLargecapacitiveloadSmallcapacitiveload77PscasaFunctionofRise/FallTimesPnormalizedtsin
/tsoutVDD=3.3VVDD=2.5VVDD=1.5VWhenloadcapacitanceissmall(tsin/tsout
>2forVDD>2V)thepowerisdominatedbyPscW/Lp=1.125m/0.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度国有企业试用期劳动合同范本细则
- 2025年度生鲜水果供应链金融服务合同
- 语言艺术在医疗写作中的应用
- 智能办公时代下的教师技能需求分析
- 老年人家庭医疗护理常识全解析
- 跨领域合作学校对外交流的多元发展
- 智慧教育如何用科技助力小学生阅读
- 构建和谐家园关系共筑孩子美好未来
- 茶文化在小学教育中的价值体现及实践路径
- 2025年襄阳职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 加油站廉洁培训课件
- 2022版义务教育(生物学)课程标准(附课标解读)
- 2023届上海市松江区高三下学期二模英语试题(含答案)
- 诫子书教案一等奖诫子书教案
- 《民航服务沟通技巧》教案第16课民航服务人员平行沟通的技巧
- 深圳市物业专项维修资金管理系统操作手册(电子票据)
- 2023年铁岭卫生职业学院高职单招(数学)试题库含答案解析
- 起重机械安装吊装危险源辨识、风险评价表
- 华北理工儿童口腔医学教案06儿童咬合诱导
- 中国建筑项目管理表格
- 高一3班第一次月考总结班会课件
评论
0/150
提交评论