版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省海安市八校联考数学九上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()A. B. C. D.2.下列运算中,结果正确的是()A. B. C. D.3.用配方法解方程,方程应变形为()A. B. C. D.4.若,那么的值是()A. B. C. D.5.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为()A. B. C. D.6.已知关于的一元二次方程有两个相等的实数根,则()A.4 B.2 C.1 D.﹣47.二次函数的图象的顶点坐标是()A. B. C. D.8.若,则的值为()A.1 B. C. D.9.函数y=ax2与y=﹣ax+b的图象可能是()A. B.C. D.10.如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1:9,则OC:CF的值为()A.1:2 B.1:3 C.1:8 D.1:9二、填空题(每小题3分,共24分)11.如图,在中,,按以下步骤作图:在上分别截取使分别以为圆心,以大于的长为半径作弧,两弧在内交于点③作射线交于点,则_______.12.已知,则=_____.13.如图,在边长为1的正方形网格中,.线段与线段存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为__________.14.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.15.反比例函数图像经过点(2,-3),则它的函数表达式是.16.如图,在平面直角坐标系中,,P是经过O,A,B三点的圆上的一个动点(P与O,B两点不重合),则__________°,__________°.17.现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有整数解的概率为.18.点是线段的黄金分割点,若,则较长线段的长是_____.三、解答题(共66分)19.(10分)如图在Rt△ABC中,∠C=90°,BD平分∠ABC,过D作DE⊥BD交AB于点E,经过B,D,E三点作⊙O.(1)求证:AC与⊙O相切于D点;(2)若AD=15,AE=9,求⊙O的半径.20.(6分)如图,在中,,,垂足为,为上一点,连接,作交于.(1)求证:.(2)除(1)中相似三角形,图中还有其他相似三角形吗?如果有,请把它们都写出来.(证明不做要求)21.(6分)为了维护国家主权,海军舰队对我国领海例行巡逻.如图,正在执行巡航任务的舰队以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔在北偏东30°方向上.(1)求∠APB的度数.(2)已知在灯塔P的周围40海里范围内有暗礁,问舰队继续向正东方向航行是否安全?22.(8分)已知正比例函数y=-3x与反比例函数y=交于点P(-1,n),求反比例函数的表达式23.(8分)在矩形ABCD中,AB=3,AD=5,E是射线DC上的点,连接AE,将△ADE沿直线AE翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.24.(8分)如图,正方形ABCD中,E,F分别是AB,BC边上的点,AF与DE相交于点G,且AF=DE.求证:(1)BF=AE;(2)AF⊥DE.25.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是__________,位置关系是__________;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.26.(10分)如图1,抛物线与轴交于点和点,与轴交于点,且满足,若对称轴在轴的右侧.(1)求抛物线的解析式.(2)如图,若点为线段上的一动点(不与重合),分别以、为斜边,在直线的同侧作等腰直角三角形和,试确定面积最大时点的坐标.(3)若,是抛物线上的两点,当,时,均有,求的取值范围.
参考答案一、选择题(每小题3分,共30分)1、A【题目详解】解:画树状图得:∵共有4种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故选A.2、C【解题分析】A:完全平方公式:,据此判断即可B:幂的乘方,底数不变,指数相乘,据此判断即可C:幂的乘方,底数不变,指数相乘D:同底数幂相除,底数不变指数相减【题目详解】选项A不正确;选项B不正确;选项C正确选项D不正确.故选:C【题目点拨】此题考查幂的乘方,完全平方公式,同底数幂的除法,掌握运算法则是解题关键3、D【分析】常数项移到方程的右边,两边配上一次项系数一半的平方,写成完全平方式即可得.【题目详解】解:∵,
∴,即,
故选:D.【题目点拨】本题考查配方法解一元二次方程,熟练掌握完全平方公式和配方法的基本步骤是解题的关键.4、A【分析】根据,可设a=2k,则b=3k,代入所求的式子即可求解.【题目详解】∵,∴设a=2k,则b=3k,则原式==.故选:A.【题目点拨】本题考查了比例的性质,根据,正确设出未知数是本题的关键.5、B【解题分析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案.【题目详解】解:∵小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,
∴小明选择到甲社区参加实践活动的可能性为:.
故选:B.【题目点拨】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于的一元一次方程,解方程即可得出结论.【题目详解】解:∵方程有两个相等的实数根,∴,解得:.故选A.【题目点拨】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于的一元一次方程是解题的关键.7、B【分析】根据二次函数的性质,用配方法求出二次函数顶点式,再得出顶点坐标即可.【题目详解】解:∵抛物线
=(x+1)2+3
∴抛物线的顶点坐标是:(−1,3).
故选B.【题目点拨】此题主要考查了利用配方法求二次函数顶点式以及求顶点坐标,此题型是考查重点,应熟练掌握.8、D【解题分析】∵,∴==,故选D9、B【解题分析】选项中,由图可知:在,;在,,∴,所以A错误;选项中,由图可知:在,;在,,∴,所以B正确;选项中,由图可知:在,;在,,∴,所以C错误;选项中,由图可知:在,;在,,∴,所以D错误.故选B.点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.10、A【分析】利用位似的性质和相似三角形的性质得到,然后利用比例性质求出即可.【题目详解】解:∵△ABC与△DEF位似,∴=,∴,∴,故选A.【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.二、填空题(每小题3分,共24分)11、【分析】由已知可求BC=6,作,由作图知平分,依据知,再证得可知BE=2,设,则,在中得,解之可得答案.【题目详解】解:如图所示,过点作于点,由作图知平分,,,,,,,∴,∵在中,,,设,则在中∴,解得:,即,故选:.【题目点拨】本题综合考查了角平分线的尺规作图及角平分线的性质、勾股定理等知识,利用勾股定理构建方程求解是解题关键.12、【解题分析】根据题意,设x=5k,y=3k,代入即可求得的值.【题目详解】解:由题意,设x=5k,y=3k,∴==.故答案为.【题目点拨】本题考查了分式的求值,解题的关键是根据分式的性质对已知分式进行变形.13、或【分析】根据旋转后的对应关系分类讨论,分别画出对应的图形,作出对应点连线的垂直平分线即可找到旋转中心,最后根据点A的坐标即可求结论.【题目详解】解:①若旋转后点A的对应点是点C,点B的对称点是点D,连接AC和BD,分别作AC和BD的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OC,OB=OD,故点O即为所求,∵,∴由图可知:点O的坐标为(5,2);②若旋转后点A的对应点是点D,点B的对称点是点C,连接AD和BC,分别作AD和BC的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OD,OB=OC,故点O即为所求,∵,∴由图可知:点O的坐标为综上:这个旋转中心的坐标为或故答案为:或.【题目点拨】此题考查的是根据旋转图形找旋转中心,掌握垂直平分线的性质及作法是解决此题的关键.14、.【分析】连接OB,根据垂径定理和勾股定理即可求出OB,从而求出EC,再根据勾股定理即可求出BC,根据三线合一即可求出BF,最后再利用勾股定理即可求出OF.【题目详解】连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm则EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案为.【题目点拨】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.15、.【解题分析】试题分析:设反比例函数的解析式是.则,得,则这个函数的表达式是.故答案为.考点:1.待定系数法求反比例函数解析式;2.待定系数法.16、4545或135【分析】易证△OAB是等腰直角三角形,据此即可求得∠OAB的度数,然后分当P在弦OB所对的优弧上和在弦OB所对的劣弧上,两种情况进行讨论,利用圆周角定理求解.【题目详解】解:∵O(0,0)、A(0,2)、B(2,0),
∴OA=2,OB=2,
∴△OAB是等腰直角三角形.
∴∠OAB=45°,
当P在弦OB所对的优弧上时,∠OPB=∠OAB=45°,
当P在弦OB所对的劣弧上时,∠OPB=180°-∠OAB=135°.
故答案是:45°,45°或135°.【题目点拨】本题考查了圆周角定理,正确理解应分两种情况进行讨论是关键.17、【题目详解】首先根据一元二次方程有实数解可得:4-4(a-2)≥0可得:a≤3,则符合条件的a有0,1,2,3四个;解分式方程可得:x=,∵x≠2,则a≠1,a≠2,综上所述,则满足条件的a为0和3,则P=.考点:(1)、概率;(2)、分式方程的解.18、【分析】根据黄金分割的概念得到较长线段,代入计算即可.【题目详解】∵C是AB的黄金分割点,
∴较长线段,∵AB=2cm,
∴P;
故答案为:.【题目点拨】本题考查了黄金分割,一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分割点,并且较长线段是整个线段的倍.三、解答题(共66分)19、(1)见解析;(2)1.【解题分析】试题分析:(1)连接OD,则有∠1=∠2,而∠2=∠3,得到∠1=∠3,因此OD∥BC,又由于∠C=90°,所以OD⊥AD,即可得出结论.(2)根据OD⊥AD,则在RT△OAD中,OA2=OD2+AD2,设半径为r,AD=15,AE=9,得到(r+9)2=152+r2,解方程即可.(1)证明:连接OD,如图所示:∵OD=OB,∴∠1=∠2,又∵BD平分∠ABC,∴∠2=∠3,∴∠1=∠3,∴OD∥BC,而∠C=90°,∴OD⊥AD,∴AC与⊙O相切于D点;(2)解:∵OD⊥AD,∴在RT△OAD中,OA2=OD2+AD2,又∵AD=15,AE=9,设半径为r,∴(r+9)2=152+r2,解方程得,r=1,即⊙O的半径为1.考点:切线的判定.20、(1)证明见解析;(2)有,见解析.【分析】(1)通过线段垂直和三角形内角之和为180°求出和,从而证明.(2)通过两内角相等写出所有相似三角形即可.【题目详解】(1)∵∴,∴又∵,∴,又∵∴,又∵,∴,∴,∴(2)∵,∴;∴,∴,同理得,∴,即,【题目点拨】本题考查了相似三角形的性质以及证明,掌握相似三角形的判定定理是解题的关键.21、(1);(2)安全.【分析】(1)如图(见解析),先根据方位角的定义可得,再根据平行线的判定与性质可得,然后根据角的和差即可得;(2)设海里,分别在和中,解直角三角形建立等式,求出x的值,由此即可得出答案.【题目详解】(1)如图,过点P作于点C,由题意得:海里,,,;(2)由垂线段最短可知,若海里,则舰队继续向正东方向航行是安全的,设海里,在中,,即,解得,在中,,即,解得,,,解得,即海里,,舰队继续向正东方向航行是安全的.【题目点拨】本题考查了方位角、平行线的判定与性质、解直角三角形等知识点,较难的是题(2),将问题正确转化为求PC的长是解题关键.22、.【分析】将点P的坐标代入正比例函数y=-3x中,即可求出n的值,然后将P点坐标代入反比例函数y=中,即可求出反比例函数的表达式.【题目详解】解:将点P的坐标代入正比例函数y=-3x中,得n=-3×(-1)=3,故P点坐标为(-1,3)将点P(-1,3)代入反比例函数y=中,得3=解得:m=2故反比例函数的解析式为:【题目点拨】此题考查的是求反比例函数的解析式,掌握用待定系数法求反比例函数的解析式是解决此题的关键.23、(1)证明见解析;(2);(3)、5、15、【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时;②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【题目详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴=∴=∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5GF)2+(5-GF)2=52∴GF=∴△EFC的面积为××2=;(3)解:①当∠EFC=90°时,A、F、C共线,如图所示:设DE=EF=x,则CE=3-x,∵AC=,∴CF=-x,∵∠CFE=∠D=90°,∠DCA=∠DCA,∴△CEF∽△CAD,∴,即,解得:ED=x=;②当∠ECF=90°时,如图所示:∵AD==5,AB=3,∴==4,设=x,则=3-x,∵∠DCB=∠ABC=90°,∴∽,∴,即,解得:x==;由折叠可得:,设,则,,在RT△中,∵,即9²+x²=(x+3)²,解得x==12,∴;③当∠CEF=90°时,AD=AF,此时四边形AFED是正方形,∴AF=AD=DE=5,综上所述,DE的长为:、5、15、.【题目点拨】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.24、(1)见解析;(2)见解析.【解题分析】(1)根据正方形的性质得到AD=AB,∠DAE=∠ABE=90°,根据全等三角形的性质即可得到结论;
(2)根据全等三角形的性质得到∠ADE=∠BAF,根据余角的性质即可得到结论.【题目详解】证明:(1)∵四边形ABCD是正方形,∴AD=AB,∠DAE=∠ABE=90°,
在Rt△DAE与Rt△ABF中,AD=ABDE=AF,
∴Rt△DAE≌Rt△ABF(HL),
∴BF=AE;
(2)∵Rt△DAE≌Rt△ABF,
∴∠ADE=∠BAF,
∵∠ADE=∠AED=90°,
∴∠BAF=∠AEG=90°,
∴∠AGE=90°,
【题目点拨】本题考查正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.25、(1)FG=CE,FG∥CE;(2)成立,理由见解析.【解题分析】(1)结论:FG=CE,FG∥CE,如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可;(2)结论仍然成立,如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【题目详解】(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M,∵四边形ABCD是正方形,∴BC=CD,∠ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电装作业合同范例
- 天价豪宅拆迁合同范例
- 商标异议合同范例
- 使用林地合同范例
- 井盖验收合同范例
- 正规电脑供货合同范例
- 电脑设备供货合同范例
- 医药公司委托销售合同范例
- Unit 9 Yes,I can!(教学实录)-2024-2025学年沪教版(五四制)(2024)英语一年级上册
- 辐射安全管理复习题
- 部编版历史九年级上册第六单元 第17课君主立宪制的英国【课件】y
- 2024年《建筑设备安装》复习考试题库及答案(含各题型)
- 2024政府采购评审专家考试题库附含答案
- 2022年内蒙古导游资格考试(含各科)题库(含答案和必背题)
- 道路清扫环卫报价方案
- 第24课《穿井得一人》公开课一等奖创新教学设计 统编版语文七年级上册
- 广告创意与品牌宣传考核试卷
- 提高吸入剂使用正确率品管圈成果汇报
- 《2025年日历》电子版模板年历月历工作学习计划横版 日历计划
- 保安保洁保障人员院感培训
- 会议接待摆台培训
评论
0/150
提交评论