![江苏省无锡市各地2024届数学九年级第一学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view/4602b6782cfcf62c3d3e5680a82c2de2/4602b6782cfcf62c3d3e5680a82c2de21.gif)
![江苏省无锡市各地2024届数学九年级第一学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view/4602b6782cfcf62c3d3e5680a82c2de2/4602b6782cfcf62c3d3e5680a82c2de22.gif)
![江苏省无锡市各地2024届数学九年级第一学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view/4602b6782cfcf62c3d3e5680a82c2de2/4602b6782cfcf62c3d3e5680a82c2de23.gif)
![江苏省无锡市各地2024届数学九年级第一学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view/4602b6782cfcf62c3d3e5680a82c2de2/4602b6782cfcf62c3d3e5680a82c2de24.gif)
![江苏省无锡市各地2024届数学九年级第一学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view/4602b6782cfcf62c3d3e5680a82c2de2/4602b6782cfcf62c3d3e5680a82c2de25.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市各地2024届数学九年级第一学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列计算正确的是()A.; B.; C.; D..2.在Rt△ABC中,∠C=90°,∠B=35°,AB=3,则BC的长为()A.3sin35° B. C.3cos35° D.3tan35°3.将二次函数通过配方可化为的形式,结果为()A. B.C. D.4.反比例函数的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A. B. C. D.5.如图是小玲设计用手电来测家附近“新华大厦”高度的示意图.点处放一水平的平面镜,光线从点出发经平面镜反射后刚好射到大厦的顶端处,已知,且测得米,米,米,那么该大厦的高度约为()A.米 B.米 C.米 D.米6.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是()A.6π B.12π C.18π D.24π7.如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是()图(1)图(2)A. B.当是等边三角形时,秒C.当时,秒 D.当的面积为时,的值是或秒8.三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A.11 B.15 C.11或15 D.不能确定9.已知抛物线的对称轴为直线,与x轴的一个交点坐标,其部分图象如图所示,下列结论:抛物线过原点;;;抛物线的顶点坐标为;当时,y随x增大而增大其中结论正确的是A. B. C. D.10.如图,在△ABC中,点D、B分别是AB、AC的中点,则下列结论:①BC=3DE;②=;③=;④=;其中正确的有()A.4个 B.3个 C.2个 D.1个11.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.18° B.24° C.30° D.26°12.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A.100° B.110° C.120° D.130°二、填空题(每题4分,共24分)13.若方程有两个不相等的实数根,则的值等于__________________.14.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1.若△E1FA1∽△E1BF,则AD=.15.如图,一抛物线与轴相交于,两点,其顶点在折线段上移动,已知点,,的坐标分别为,,,若点横坐标的最小值为0,则点横坐标的最大值为______.16.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.17.数学学习应经历“观察、实验、猜想、证明”等过程.下表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德·摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上实验数据,估计硬币出现“正面朝上”的概率为__________.(精确到0.1)18.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为_____.三、解答题(共78分)19.(8分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).20.(8分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)21.(8分)“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?22.(10分)如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.23.(10分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.24.(10分)2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道.根据市场调查,在文旦上市销售的30天中,其销售价格(元公斤)与第天之间满足函数(其中为正整数);销售量(公斤)与第天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量与第天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润的最大值及相应的的值.25.(12分)解方程:x2﹣2x﹣5=1.26.解方程:3x2+1=2x.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:分别根据次根式的加减运算法则以及合并同类项的法则、幂的乘方与积的乘方法则及同底数幂的除法法则对各选项进行逐一判断即可.详解:A.与不是同类项,不能合并,故本选项错误;B.,故本选项正确;C.,故本选项错误;D.,故本选项错误.故选:B.点睛:此题考查了二次根式的加减运算以及合并同类项、积的乘方运算和同底数幂的除法法则运算等知识,正确掌握运算法则是解题的关键.2、C【分析】根据余弦定义求解即可.【题目详解】解:如图,∵∠C=90°,∠B=35°,AB=3,cos35°=,∴BC=3cos35°.故选:C.【题目点拨】本题考查了锐角三角函数,属于基础题型,熟练掌握余弦的定义是解此题的关键.3、A【分析】根据完全平方公式:配方即可.【题目详解】解:==故选A.【题目点拨】此题考查的是利用配方法将二次函数的一般式化为顶点式,掌握完全平方公式是解决此题的关键.4、C【分析】根据反比例函数的性质直接判断即可得出答案.【题目详解】∵反比例函数y=中,当x>0时,y随x的增大而减小,
∴k-1>0,
解得k>1.
故选C.【题目点拨】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.5、B【分析】根据光线从点出发经平面镜反射后刚好射到大厦的顶端处,可知,再由,可得,从而可以得到,即可求出CD的长.【题目详解】∵光线从点出发经平面镜反射后刚好射到大厦的顶端处∴∵∴∴∴∵米,米,米∴∴CD=16(米)【题目点拨】本题考查的知识点是相似三角形的性质与判定,通过判定三角形相似得到对应线段成比例,构成比例是关键.6、A【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【题目详解】∵,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=.故答案为A.【题目点拨】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.7、D【分析】先根据图象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判断出∠EBC≠60°,从而得出点P可能在ED上时,△PBQ是等边三角形,但必须是AD的中点,而AE>ED,所以点P不可能到AD中点的位置,故△PBQ不可能是等边三角形;C、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,D、分点P在BE上和点P在CD上两种情况计算即可.【题目详解】由图象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A错误,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴点P在ED时,有可能△PBQ是等边三角形,∵BE=BC,∴点P到点E时,点Q到点C,∴点P在线段AD中点时,有可能△PBQ是等边三角形,∵AE>DE,∴点P不可能到AD的中点,∴△PBQ不可能是等边三角形,故B错误,C、∵△ABE∽△QBP,∴点E只有在CD上,且满足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4−)=.故C错误,D、①如图(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=−(舍)或t=,②当点P在CD上时,S△BPQ=×BC×PC=×5×(5+2+4−t)=×(11−t)=4,∴t=,∴当△BPQ的面积为4cm2时,t的值是或秒,故D正确,故选:D.【题目点拨】此题是二次函数综合题,主要考查动点问题的函数图象、矩形的性质、三角形的面积公式等知识.解题的关键是读懂图象信息求出相应的线段,学会转化的思想,把问题转化为方程的思想解决,属于中考常考题型..8、B【题目详解】解:方程x2-10x+21=0,变形得:(x-3)(x-7)=0,解得:x1=3,x2=7,若x=3,三角形三边为2,3,6,不合题意,舍去,则三角形的周长为2+6+7=1.故选:B.9、C【解题分析】∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),∴抛物线与x轴的另一个交点为(0,0),故①正确,当x=﹣1时,y=a﹣b+c>0,故②错误,∵,得4a+b=0,b=﹣4a,∵抛物线过点(0,0),则c=0,∴4a+b+c=0,故③正确,∴y=ax2+bx=a(x+)2﹣=a(x+)2﹣=a(x﹣2)2﹣4a=a(x﹣2)2+b,∴此函数的顶点坐标为(2,b),故④正确,当x<1时,y随x的增大而减小,故⑤错误,故选C.点睛:本题考查二次函数的图象和性质.熟练应用二次函数的图象和性质进推理判断是解题的关键.10、D【分析】先根据点DE分别是AB,AC的中点,得到DE是△ABC的中位线,进而得到BC=2DE,DE∥BC,据此得到△ADE∽△ABC,再根据相似三角形的性质进行判断即可.【题目详解】解:∵△ABC中,点DE分别是AB,AC的中点,∴BC=2DE,DE∥BC,∴△ADE∽△ABC,∴,即;∴,故正确的有②.故选:D.【题目点拨】本题考查的知识点三角形的中位线定理,相似三角形的判定与性质,根据题目得出三角形相似是解此题的关键.11、B【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【题目详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【题目点拨】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.12、B【分析】利用圆内接四边形对角互补的性质求解.【题目详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故选B.【题目点拨】本题考查圆内接四边形的性质,掌握圆内接四边形对角互补是解题关键.二、填空题(每题4分,共24分)13、1【分析】根据方程有两个不相等的实数根解得a的取值范围,进而去掉中的绝对值和根号,化简即可.【题目详解】根据方程有两个不相等的实数根,可得解得a<∴∴===3-2=1故答案为:1.【题目点拨】本题考查一元二次方程根的判别式和整式的化简求值,当△>0,方程有2个不相等的实数根.14、3.2.【题目详解】解:∵∠ACB=90°,AB=20,BC=6,∴.设AD=2x,∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为A2,点E的对应点为E2,∴AE=DE=DE2=A2E2=x.∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD.∴AD:AC=DF:BC,即2x:8=DF:6,解得DF=2.5x.在Rt△DE2F中,E2F2=DF2+DE22=3.25x2,又∵BE2=AB-AE2=20-3x,△E2FA2∽△E2BF,∴E2F:A2E2=BE2:E2F,即E2F2=A2E2•BE2.∴,解得x=2.6或x=0(舍去).∴AD的长为2×2.6=3.2.15、7【分析】当点横坐标的最小值为0时,抛物线顶点在C点,据此可求出抛物线的a值,再根据点横坐标的最大值时,顶点在E点,求出此时的抛物线即可求解.【题目详解】当点横坐标的最小值为0时,抛物线顶点在C点,设该抛物线的解析式为:y=a(x+2)2+8,代入点B(0,0)得:0=a(x+2)2+8,则a=−2,即:B点横坐标取最小值时,抛物线的解析式为:y=-2(x+2)2+8.当A点横坐标取最大值时,抛物线顶点应取E,则此时抛物线的解析式:y=-2(x−8)2+2,令y=0,解得x1=7,x2=9∴点A的横坐标的最大值为7.故答案为7.【题目点拨】此题主要考查二次函数的平移问题,解题的关键是熟知待定系数法求解解析式.16、k>2【解题分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【题目详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【题目点拨】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.17、0.1【分析】由于表中硬币出现“正面朝上”的频率在0.1左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率为0.1.【题目详解】解:因为表中硬币出现“正面朝上”的频率在0.1左右波动,
所以估计硬币出现“正面朝上”的概率为0.1.
故答案为0.1.【题目点拨】本题考查了利用频率估计概率,随实验次数的增多,值越来越精确.18、2【解题分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【题目详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴2,∴AF=2GF=4,∴AG=1.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=2.故答案为:2.【题目点拨】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.三、解答题(共78分)19、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解题分析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.20、(1)见解析;(2)169π(cm2).【分析】(1)根据垂径定理,即可得=,根据同弧所对的圆周角相等,证出∠BAC=∠BCD,再根据等边对等角,即可得到∠BAC=∠ACO,从而证出∠ACO=∠BCD;(2)根据垂径定理和勾股定理列出方程,求出圆的半径,即可求出圆的面积.【题目详解】解:(1)∵AB为⊙O的直径,AB⊥CD,∴=.∴∠BAC=∠BCD.∵OA=OC,∴∠BAC=∠ACO.∴∠ACO=∠BCD;(2)∵AB为⊙O的直径,AB⊥CD,∴CE=CD=×24=12(cm).在Rt△COE中,设CO为r,则OE=r﹣8,根据勾股定理得:122+(r﹣8)2=r2解得r=1.∴S⊙O=π×12=169π(cm2).【题目点拨】此题考查的是垂径定理、等腰三角形的性质、圆周角定理推论和求圆的面积,掌握垂径定理和勾股定理的结合是解决此题的关键.21、(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意列出关于x的一元二次方程,求解方程即可;(2)设售价应降低y元,则每天售出(200+50y)千克,根据题意列出关于y的一元二次方程,求解方程即可.【题目详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为,根据题意得解得,(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低元,则每天可售出千克根据题意,得整理得,,解得,∵要减少库存∴不合题意,舍去,∴答:售价应降低3元.【题目点拨】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.22、(1);(2)存在,理由见解析;D(-4,)或(2,);(3)最大值;最小值【分析】(1)将点A、B的坐标代入函数解析式计算即可得到;(2)点D应在x轴的上方或下方,在下方时通过计算得△ABD的面积是△ABC面积的倍,判断点D应在x轴的上方,设设D(m,n),根据面积关系求出m、n的值即可得到点D的坐标;(3)设E(x,y),由点E是以点C为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E的坐标为E,再根据点F是AE中点表示出点F的坐标,再设设F(m,n),再利用m、n、与x的关系得到n=,通过计算整理得出,由此得出F点的轨迹是以为圆心,以为半径的圆,再计算最大值与最小值即可.【题目详解】解:(1)将点A(-3,0)、B(1,0)代入y=ax2+bx-2中,得,解得,∴(2)若D在x轴的下方,当D为抛物线顶点(-1,)时,,△ABD的面积是△ABC面积的倍,,所以D点一定在x轴上方.设D(m,n),△ABD的面积是△ABC面积的倍,n==m=-4或m=2D(-4,)或(2,)(3)设E(x,y),∵点E是以点C为圆心且1为半径的圆上的动点,∴,∴y=,∴E,∵F是AE的中点,∴F的坐标,设F(m,n),∴m=,n=,∴x=2m+3,∴n=,∴2n+2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买电器押金合同范例
- 2025年监房安全门项目投资可行性研究分析报告
- 软件技术合同范本
- 2024年多媒体讲台行业投资分析及发展战略研究咨询报告
- 2025年儿科麻醉面罩行业深度研究分析报告
- 公司会计协议合同范例
- 肖像权使用合同范本
- 厂区绿化养护合同范本
- 2025年安全带项目可行性研究报告
- 2025年度财务数据传输保密及安全协议
- 2025年中国电信集团有限公司招聘笔试参考题库含答案解析
- 2025年全国计算机二级等级考试全真模拟试卷及答案(共九套卷)
- 2024复工复产安全培训
- 2025中国南光集团限公司校园招聘高频重点提升(共500题)附带答案详解
- 机加工行业安全生产风险辨识及控制清单
- 江苏省苏州市2024-2025学年第一学期八年级数学期末模拟卷(一)(无答案)
- 呼吸科护理组长述职报告
- 【历史】秦汉时期:统一多民族国家的建立和巩固复习课件-2024-2025学年统编版七年级历史上册
- 社区中心及卫生院65岁及以上老年人健康体检分析报告模板
- 化工过程安全管理导则AQT 3034-2022知识培训
- 2024电力建设工程质量问题通病防止手册
评论
0/150
提交评论