高等数学中值定理定义_第1页
高等数学中值定理定义_第2页
高等数学中值定理定义_第3页
高等数学中值定理定义_第4页
高等数学中值定理定义_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章中值定理应用研究函数性质及曲线性态利用导数解决实际问题罗尔中值定理拉格朗日中值定理柯西中值定理推广微分中值定理与导数的应用一、罗尔(Rolle)定理第一节机动目录上页下页返回结束二、拉格朗日中值定理三、柯西(Cauchy)中值定理中值定理第三章极值的定义:设函数在的某邻域内有定义,若对该邻域内的任意一点,恒有则称在点处取得极大值(或极小值),而称为函数的极大值点(或极小值点).极大值与极小值统称为极值,极大值点与极小值点统称为函数的极值点.极值的必要条件定理:如果在点处可导,且在处取得极值,则注1.在极值点处并非都有.注2.使的点也并非都是极值点,我们把的点称为驻点.注3.若在极值点处存在切线,则该切线是水平切线.一罗尔(Rolle)定理满足:(1)在区间[a,b]上连续(2)在区间(a,b)内可导(3)

f(a)=f(b)使证:故在[a,b]上取得最大值

M和最小值m.在(a,b)内至少存在一点机动目录上页下页返回结束又因为

f(a)=f(b),所以最大值与最小值必定至少有一个在区间内部,而这一个就是我们要找的一个极值点.若M>

m,则M和m

中至少有一个与端点值不等,不妨设则至少存在一点使注意:1)定理条件不全具备,结论不一定成立.例如,则该点为极值点,所以机动目录上页下页返回结束使2)定理条件只是充分的.本定理可推广为在(a,b)内可导,且在(a,b)内至少存在一点证明提示:

设证F(x)在[a,b]上满足罗尔定理.机动目录上页下页返回结束例1.

证明方程有且仅有一个小于1的正实根.证:1)存在性.则在[0,1]连续,且由介值定理知存在使即方程有小于1的正根2)唯一性.假设另有为端点的区间满足罗尔定理条件,至少存在一点但矛盾,故假设不真!设机动目录上页下页返回结束二、拉格朗日中值定理(1)在区间[a,b]上连续满足:(2)在区间(a,b)内可导至少存在一点使思路:利用逆向思维找出一个满足罗尔定理条件的函数作辅助函数显然,在[a,b]上连续,在(a,b)内可导,且证:问题转化为证由罗尔定理知至少存在一点即定理结论成立.拉氏目录上页下页返回结束证毕拉格朗日中值定理的有限增量形式:推论:若函数在区间I上满足则在

I上必为常数.证:在I

上任取两点日中值公式,得由的任意性知,在

I

上为常数.令则机动目录上页下页返回结束例2.

证明等式证:设由推论可知(常数)令x=0,得又故所证等式在定义域上成立.自证:经验:欲证时只需证在I上机动目录上页下页返回结束(P111例3.1.3)例3.

证明不等式证:设中值定理条件,即因为故因此应有机动目录上页下页返回结束(P111例3.1.4)三、柯西(Cauchy)中值定理分析:及(1)在闭区间[a,b]上连续(2)在开区间(a,b)内可导(3)在开区间(a,b)内至少存在一点使满足:要证柯西目录上页下页返回结束证:作辅助函数且使即由罗尔定理知,至少存在一点思考:柯西定理的下述证法对吗?两个

不一定相同错!机动目录上页下页返回结束上面两式相比即得结论.柯西定理的几何意义:注意:弦的斜率切线斜率机动目录上页下页返回结束例3.1.5设至少存在一点使证:结论可变形为设则在[0,1]上满足柯西中值定理条件,因此在(0,1)内至少存在一点

,使即证明机动目录上页下页返回结束例4.设思考:例4结论是否可用罗尔定理证明?易证

(x)在[0,1]上满足罗尔中值定理条件,使因此存在机动目录上页下页返回结束至少存在一点使证明分析:把求证的结论移项,设辅助函数:内容小结1.微分中值定理的条件、结论及关系罗尔定理拉格朗日中值定理柯西中值定理2.微分中值定理的应用(1)证明恒等式(2)证明不等式(3)证明有关中值问题的结论关键:利用逆向思维设辅助函数费马引理机动目录上页下页返回结束思考与练习1.填空题1)函数在区间[1,2]上满足拉格朗日定理条件,则中值2)设有个根,它们分别在区间机动目录上页下页返回结束上.方程(P45题14)2.设且在内可导,证明至少存在一点使提示:由结论可知,只需证即验证在上满足罗尔定理条件.设机动目录上页下页返回结束(P56例5)3.若可导,试证在其两个零点间一定有的零点.提示:设欲证:使只要证亦即作辅助函数验证在上满足罗尔定理条件.机动目录上页下页返回结束4.设求证存在使可导,且在连续,证:因此至少存在显然在上满足罗尔定理条件,即设辅助函数使得机动目录上页下页返回结束(P44题8)设证明对任意有证:5.不妨设机动目录上页下页返回结束作业P1145,7(1),(3)第二节目录上页下页返回结束费马费马(1601–1665)法国数学家,他是一位律师,数学只是他的业余爱好.他兴趣广泛,博览群书并善于思考,在数学上有许多重大贡献.他特别爱好数论,他提出的费马大定理:历经358年,直到1993年才由美国普林斯顿大学的安德鲁.怀尔斯教授经过十年的潜心研究才得到解决.引理是后人从他研究解决最值的方法中提炼出来的.拉格朗日(1736–1813)法国数学家.他在方程论,解析函数论,及数论方面都作出了重要的贡献,近百余年来,数学中的许多成就都直接或间接地溯源于他的工作,他是对分析数学产生全面影响的数学家之一.柯西(1789–1857)法国数学家,他对数学的贡献主要集中在微

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论