




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴市县平江镇中学2022年高三数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.是内的一点,,则的面积与的面积之比为(
).
.
.
.参考答案:A2.tan70°cos10°(1-tan20°)的值为(
)
A.-1
B.1
C.-2
D.2参考答案:【知识点】两角和与差的正切函数.C5
【答案解析】B
解析:tan70°cos10°(1﹣tan20°)=﹣tan70°cos10°(tan20°﹣1)=﹣cot20°cos10°(﹣1)=﹣2cot20°cos10°(sin20°﹣cos20°)=﹣2cos10°(sin20°cos30°﹣cos20°sin30°)=﹣=1故选:B.【思路点拨】先把切转化成弦,进而利用诱导公式,两角和公式和二倍角公式对原式进行化简整理,求得答案.3.已知x,y满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A. B. C. D.4参考答案:B【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义,结合目标函数z=2x+y的最大值是最小值的4倍,建立方程关系,即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线的截距最大,此时z最大,由,解得即A(1,1),此时z=2×1+1=3,当直线y=﹣2x+z经过点B时,直线的截距最小,此时z最小,由,解得,即B(a,a),此时z=2×a+a=3a,∵目标函数z=2x+y的最大值是最小值的4倍,∴3=4×3a,即a=.故选:B【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.4.设,,,,则的大小关系是(
)
A.
B.
C.
D.
参考答案:D略5.双曲线:的左顶点为,右焦点为,过点作一条直线与双曲线的右支交于点,连接分别与直线:交于点,则(
)A.
B.
C.
D.参考答案:C6.一个三棱柱的侧视图、俯视图如图所示,则三棱柱的表面积是(A)
(B)
(C)
(D)参考答案:【知识点】由三视图求面积、体积.G2A
解析:由正视图知:几何体是以底面是直角边长为2的等腰直角三角形,高为3的正三棱柱,所以底面积为2××22=4,侧面积为3×(2+2+2)=,所以其表面积为.故选:A【思路点拨】由已知的三视图可得:该几何体是一个以侧视图为底面的三棱柱,分别求出棱柱的底面面积、周长及高,代入棱柱表面积公式,可得答案.7.已知函数,下列结论中不正确的是A.的图象关于点(,0)中心对称
B.的图象关于直线对称C.的最大值为
D.既是奇函数,又是周期函数参考答案:C【分析】利用三角函数的图象与基本性质,A中,利用诱导公式化简得,可得A正确;B中,利用诱导公式化简得,可得B正确;C中,化简得函数的解析式为,令,利用二次函数的图象与性质,可得的最大值为,所以不正确;D中,化简函数的,根据三角函数的周期性的定义,可的是正确的,即可得到答案.【详解】对于A中,因为,则,所以,可得的图象关于中心对称,故A正确;对于B,因为,,所以,可得的图象关于直线对称,故B正确;对于C,化简得,令,,,因为的导数,所以当或时,,函数为减函数;当时,,函数为增函数,因此函数的最大值为或时的函数值,结合,可得的最大值为,由此可得f(x)的最大值为,而不是,所以不正确;对于D,因为,所以是奇函数,因为,所以为函数的一个周期,得的一个周期,得为周期函数,可得既是奇函数,又是周期函数,所以正确,故选C.
8.某四棱锥的三视图如图所示,则该四棱锥的侧面积是A.27
B.30C.32
D.36参考答案:A考点:空间几何体的表面积与体积空间几何体的三视图与直观图该四棱锥的底面是边长为3的正方形,
侧面是:两个直角边长为3,4的直角三角形,
两个直角边长为3,5的直角三角形,
所以该四棱锥的侧面积是:9.在△中,角、、所对的边分别为、、,且边上的高为,则的最大值是
A.8
B.
6
C.
D.4参考答案:D10.已知数列{an}是等差数列a10=10,其前10项和S10=55,则其公差d=()A.0 B.1 C.C﹣1 D.参考答案:B【考点】85:等差数列的前n项和.【分析】利用等差数列通项公式和前n项和公式列出方程组,能求出公差.【解答】解:∵数列{an}是等差数列a10=10,其前10项和S10=55,∴,解得a1=1,d=1.故选:B.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11.若直线与曲线恰有四个公共点,则的取值集合是____参考答案:12.曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为.参考答案:【考点】定积分在求面积中的应用;定积分.【分析】求出曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,),由此用定积分计算公式加以运算即可得到本题答案.【解答】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)∴曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为S=()dx+dx=(x﹣x3)+(x3﹣x)=.故答案为:.13.已知数列的前项和,则
.参考答案:()14.给出下列四个命题:①已知都是正数,且,则;②若函数的定义域是,则;③已知x∈(0,π),则y=sinx+的最小值为;④已知a、b、c成等比数列,a、x、b成等差数列,b、y、c也成等差数列,则的值等于2.其中正确命题的序号是________.参考答案:①,④
15.分别是双曲线的左右焦点,为双曲线右支上的一点,圆A是的内切圆,圆A与轴相切于点,则的值为
▲
.参考答案:16.若(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),则的值为
.参考答案:﹣1【考点】二项式定理的应用.【分析】由(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=,可得0=1+++…+,即可得出.【解答】解:由(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=,可得0=1+++…+,∴++…+=﹣1,故答案为:﹣1.【点评】本题考查了二项式定理的应用、方程的应用,考查了推理能力与计算能力,属于基础题.17.已知tan(+α)=,α∈(,π),则tanα的值是;cosα的值是.参考答案:﹣;﹣。考点: 两角和与差的正切函数;任意角的三角函数的定义.专题: 三角函数的求值.分析: 利用两角和与差的正切函数及任意角的三角函数的定义,即可求得tanα与cosα的值.解答: 解:tan(+α)=,∴tanα=tan[(+α)﹣]===﹣;又α∈(,π),∴cosα=﹣=﹣.故答案为:;.点评: 本题考查两角和与差的正切函数及任意角的三角函数的定义,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.过直线上的动点作抛物线的两切线,为切点。(1)若切线的斜率分别为,求证:为定值。(2)求证:直线过定点。参考答案:(1)设过与抛物线相切的直线方程为:由,得,因直线与抛物线相切,所以,即,所以,为定值。………5分(2)由(1)可得切点坐标为,即,所以直线的方程为,从而直线过定点。…………10分19.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.参考答案:【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】计算题;空间位置关系与距离;空间角.【分析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A﹣PC﹣D的平面角的余弦值.【解答】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…(2分)可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)
(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.(4分)∵ED?平面PED∴平面PED⊥平面PAC(6分)(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)(8分)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)(10分)∴cos<,(11分)由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.(12分)【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.20.如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=40°
(1)求证:EF⊥平面BCE;(2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE(3)求二面角F—BD—A的大小。
参考答案:证明:因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,所以BC⊥平面ABEF。所以BC⊥EF。因为
ABE为等腰直角三角形,AB=AE,所以AEB=45°,又因为AEF=45,所以FEB=90°,即EF⊥BE。因为BC平面ABCD,BE平面BCE,BC∩BE=B所以EF⊥平面BCE(Ⅱ)取BE的中点N,连结CN,MN则∴PMNC为平行四边形,所以PM∥CN。∵CN在平面BCE内,PM不在平面BCE内。∴PM//平面BCE。(Ⅲ)因△ABE等腰直角三角形,AB=AE,所以AE⊥AB又因为平面ABEF∩平面ABCD=AB,所以AE⊥平面ABCD,所以AE⊥AD即AD、AB、AE两两垂直;如图建立空间直解坐标系,设AB=1,则AE=1,B(0,1,0),D(1,0,0),
21.(本小题满分14分)已知,函数⑴求的最小正周期,并求其图象对称中心的坐标;⑵当时,求函数的值域参考答案:解:⑴
最小正周期为
对称中心为
⑵
当,即时,
当,即时,略22.(本小题满分12分)某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过小时收费元,超过小时的部分每小时收费元(不足小时的部分按小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过小时.(1)若甲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西乐行业深度研究分析报告(2024-2030版)
- GB/T 31902-2025服装衬布外观疵点检验方法
- 西安科技大学高新学院《装饰艺术》2023-2024学年第一学期期末试卷
- 东北财经大学《中国民族民间舞》2023-2024学年第二学期期末试卷
- 芜湖职业技术学院《影视编辑与制作》2023-2024学年第二学期期末试卷
- 急诊清创操作护理
- 世界地理与旅游
- 摄影基础第14节镜头的分类与选用
- 2025年ASQ质量经理(CMQ OE)认证考试中文版题库大全-上部分(含答案解析)
- 浙江省医疗卫生事业单位招聘-基础知识类历年考试真题库(含答案)
- 光伏2021施工上岗证考核答案
- 《土壤学》第7章-植物营养与施肥原理
- DL/T 5220-2021 10kV及以下架空配电线路设计规范
- 海南啤酒市场调查报告
- 城市地铁与轨道交通建设项目环境法规和标准包括适用的环境法规、政策和标准分析
- 上海市历年中考语文现代文阅读真题40篇(2003-2021)
- 煤炭送货办法实施细则(二篇)
- 中英文课外阅读:黑骏马
- 第5课+古代非洲与美洲+高中历史统编版(2019)必修中外历史纲要下
- Unit+4+Hetitage+in+Danger+Reading(1)课件 【 备课 精讲精研】 高中英语牛津译林版选择性必修第三册+
- 炎症性肠病知识讲座
评论
0/150
提交评论